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OBJECTIVE: PROCESS SYNTHESIS

Derivative-based

Black box optimization
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(simulation, min f(.?j')
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s.t. g(x) =0
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OBJECTIVE: PROCESS SYNTHESIS

Derivative-based

Black box optimization
function
(simulation, .
experiment, etc.) 111 f(.?f)
s.t. g(z)=0

e Lack of an algebraic model
* Computationally costly simulations/experiments
e Scarcity of fully robust simulations/experiments
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OBJECTIVE: PROCESS SYNTHESIS

Derivative-based

Black box optimization
function
(simulation, .
experiment, etc.) 111 f(.?f)
s.t. g(z)=0

:U z1 = g1(x)
@j 22 = go(7)
ALAMQO ot

Automated Learning of Algebraic
Models for Optimization

2= I min f(x)
'E> E> st. g(z)=0
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MODELING PROBLEM STATEMENT

* Build a model of output variables z as a function of input
variables X over a specified interval

(1)
T2 Black box 2
r € RP : :> function, :> |l zeRK
ot <@ <t | % simulation, or a | 2= f(x)
: experiment :
%, \2rc/
Independent variables: Dependent variables:
Operating conditions, Inlet flow Efficiency, Outlet flow conditions,
properties, Simulation or experimental Conversions, Heat flow, etc.

geometry, Parameters, etc.

* Desired model traits:
v’ Accurate
v’ Tractable in algebraic optimization: Simple functional forms
v Generated from a minimal data set

Carnegie Mellon University 5



ALGORITHMIC FLOWSHEET
( Start )

Initial sampling

Build surrogate
model

Update training
data set

Adaptive sampling

Model
converged

false

true

(_Stop )
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ALGORITHMIC FLOWSHEET

1

Initial sampling




DESIGN OF EXPERIMENTS

 Goal: To generate an initial set of input variables to evenly
sample the problem space
]
(4

x:(azl r? ot . .cr:N) Tt = i
d

b/

* Design of experiments: Latin hypercube design
— Space-filling design
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INITIAL SAMPLING

e After running the design of experiments, we will evaluate
the black-box function to determine each 7!

Black-box
| furlict.lon, Initial
simulation, or training set

experiment
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ALGORITHMIC FLOWSHEET

Build surrogate
model




MODEL IDENTIFICATION

* Goal: Identify the functional form and complexity of the
surrogate models
z = f(z)

* Functional form:

— General functional form is unknown: Our method will identify
models with combinations of simple basis functions of the following

forms
Category X (x)
L. Polynomial (:Ud)a
II.  Multinomial H ry)*, form=1,2,.
d=1
III. Exponential and loga- p( ) , log (7)
rithmic forms
IV. Expected bases From experience, simple inspection, etc.

— Surrogate model will have the form:

=) B X,

JjeEB
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PART A: FIND A FUNCTIONAL FORM

e Let’s assume we know a priori the complexity or number of
terms in the model, T

* Identify the optimal T subset of basis functions such that we
v" Minimize model error
v’ Ensure that only T terms are present in the model
v Enforce the linear least squares condition for the chosen T basis functions

Ordinary linear least squares problem:

2
N
II)lgl’lZ Zi - Z ﬁinj
=1

Jjeb

where X;; is the basis function j at the
black-box data point 1 =1,2,..., N
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SELECTING THE BEST T SUBSET

Linear

2
N
least . i
squares mgm_z o Zﬁ X
=1 JEB

regression




SELECTING THE BEST T SUBSET

Linear
least
squares
regression

Solve for
a subset of
bases

N

mmz (z _Zﬁﬂ

JjEB

Sy, C B, such that |Sp| =T
=1 h =2 i =&

Zi_zﬁj 7) mmZ(zZﬁX) man(z—Zﬁg )

1ES51 JES: jES
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SELECTING THE BEST T SUBSET

Linear
least
squares
regression

Solve for
a subset of
bases

. N
min |, 3"
min
h b i—l(

mmz (z _Zﬁﬂ

JjEB

Sy, C B, such that |Sp| =T
=1 h =2 i =&

Zi_zﬁj 1) mmz (,z ZﬁX) mmZ(z —Zﬁ; )

1ES51 JES: jES
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SELECTING THE BEST T SUBSET

Linear 2
least
squares mmZ (Z - ;ﬁﬂ w)
regression .
Sy, C B, such that |S,| =
h=1 ,
Solve for . N 2 N 2 2
a subset of mén mmz (Z > B ,7) ,n}mz (Zz =S [3JX,J) mmz (z -3 8 ”),
bases i=1 JES i=1 jES G5k
2
Substitute
mm A B
closed Z ( Z . ”)
JEShH
form v
solution s.t. ZXJ(, ng)o ZX ( ~Y 8 J)U X”(Z@_Z[%XU)O
JES y i=1 JESs y i=1 JESs y sas
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SELECTING THE BEST T SUBSET

the best

2
Solve for mm Z (z _ Z B; ”)

JESK
subset of
basis N |
functions S.t. ZXU Z B;Xi; | =0, j7€S8h VS5, CB
=1 jESh
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BEST T SUBSET MINIMIZATION MODEL

Choose terms to N
minimize the min Sk = Z Zi — Zﬂsz'j
model error i=1 jeB
s.t. Zyj =T
jEB
N
—U(l—y) <Y Xiy |2 =D B;Xy | U1 —y;) j€B
i—=1 JEB
Bly; < By < BYy; jeB
y; = 10,1} j€B
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BEST T SUBSET MINIMIZATION MODEL

Choose terms to N
minimize the min Sk = Z Zi — Zﬁinj
model error =1 jEB
Exactly Tterms | st. Y y; =T
in the model jEB
N
—U(l—yj)SZXm ZZ—Zﬂinj SU(l—yj) jEB
i=1 jEB
Bly; < By < BYy; jeB
Y; = {Oa 1} ] cbB
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BEST T SUBSET MINIMIZATION MODEL

Choose terms to N
minimize the min SE=) |z— ) B;iX;
model error =l JEB
Exactly Tterms | st. Y y; =T
in the model jeB
N

_U(l_yj)SZij ZZ—Z)BJ'X?;J' SU(l—yj) jEB
Defining the i=1 jEB
subset of basis l » :

< B < : cB

functions used Bys = B = P7y; /

Y; = {Oa 1} j eB

yj =1 y;j =0

Basis function used in the model Basis function NOT used
\/ in the model

3; is chosen to satisfy a least
squares regression
(assumes loose bounds on f3;) B; =20
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PART B: FIND MODEL COMPLEXITY

* Inreality, we don’t know T a priori
e Howto find T:

— Corrected Akaike Information Criterion (AlCc)
* Gives an estimate of the difference between a model and the true

function
SSE 2T (T + 1)
|\ J |\ J
Y Y .
Accuracy + Complexity
T
0 2 4 6
0
-1 A
2 1 Solution

AlCC

5 |
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BUILD MODEL FLOWSHEET

Full algorithm

( Start )

\ 4

Initial sampling

\ 4
Build surrogate

Update
training data
set

A

\ 4

model

v

Adaptive
sampling

Model
converged

v d
P d
, \ 4
P Ve
T=
: Solve for best T term
model
T=T+1

AICc(T') >AlCc(T — 1)
OR
RMSE<toll
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ALGORITHMIC FLOWSHEET

Adaptive sampling




ADAPTIVE SAMPLING

e Goal: Search the problem space for areas of model
inconsistency or model mismatch

e More succinctly, we are trying to find points that maximize
the model error with respect to the independent variables

— Optimized using a black-box or derivative-free solver (SNOBFIT)

Carnegie Mellon University




ADAPTIVE SAMPLING

e Goal: Search the problem space for areas of model
inconsistency or model mismatch

e More succinctly, we are trying to find points that maximizes
the model error with respect to the independent variables

= Black-box function
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ADAPTIVE SAMPLING

e Goal: Search the problem space for areas of model
inconsistency or model mismatch

e More succinctly, we are trying to find points that maximizes
the model error with respect to the independent variables

= Black-box function
@ Data points

Carnegie Mellon University




ADAPTIVE SAMPLING

e Goal: Search the problem space for areas of model
inconsistency or model mismatch

e More succinctly, we are trying to find points that maximizes
the model error with respect to the independent variables

" = Black-box function
@ Data points

Surrogate model
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ADAPTIVE SAMPLING

e Goal: Search the problem space for areas of model
inconsistency or model mismatch

e More succinctly, we are trying to find points that maximizes
the model error with respect to the independent variables

Current
surrogate
optimum

= Black-box function
@ Data points

Surrogate model

True
. . \
minimum
S
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ADAPTIVE SAMPLING

e Goal: Search the problem space for areas of model
inconsistency or model mismatch

e More succinctly, we are trying to find points that maximizes
the model error with respect to the independent variables

Model y
error \\/
1 '7 . — Black-box function
__________ New sample point ¢ Data points
after interrogating
the surrogate Surrogate model
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ADAPTIVE SAMPLING

e Goal: Search the problem space for areas of model
inconsistency or model mismatch

e More succinctly, we are trying to find points that maximizes
the model error with respect to the independent variables

Reducing the order of the
model is not always
desirable

= Black-box function
@ Data points

= New surrogate model
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ADAPTIVE SAMPLING FLOWSHEET

Full algorithm Lo sttt )
7
7/ 4
(C st ) Pad Find new candidate
T . /s point(s) to sample
Initial sampling , 7 i .
’ Sample simulation at
. 4 7 x;, for new data point ¢’
. Build surrogate , 7
' model P
i v s max (e 1) < tol2
pdate - ’
o Adaptive Check model error
tralnlsr;gt; data sampling estError < tol3
) S~ - otherwise
Model S .
converged S o - Model converged=false Model converged=true
~
~
~

\‘\( Stop )
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ACCURACY VALIDATION

e Compare the method with and without adaptive sampling:

( Start )
\ 4
Initial sampling
( Start )
\ 4
Full al ith N Build surrogate Slngle Latin X
uili algoritnm: Initial samplin
& model hypercube: pling
Update : —
training data /;crisp;[ilr\:e Build surrogate
set g model

3
A\ 4

Mode CSte_)
e converged

e Two sets of known equations made up of functions

— Present in the algorithm’s basis set
— Not present in the algorithm’s basis set
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FUNCTIONS PRESENT IN THE BASIS

25% A

Known 2D equations with 2 to 10 randomly

. generated terms tested in triplicate
O 20% -
-
-
L
v 15% -
(D)
|_
-
M 10% -
D
p=

5% A

0% = —I_

1 2 3 1 2 3 1 2 3 1
2 3 4

Terms in Actual Equation

E With adaptive & \\ithout feedback using
— e Sampling feedback = N points (only Latin
—t using N points & hypercube sampling)
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FUNCTIONS NOT IN THE BASIS

25% -

Mean Test Error

5% A

0% A

20% -

15% -

10% A

B
QL] g

Q0
B+ ai + a5
am? eV

o a W

Oﬁ.’l?? log (yz;)

1 2 3 1
A B C D Combinationsof A-D
Terms in Actual Equation
: With adaptive & \\ithout feedback using
"= sampling feedback === N points (only Latin
—t using N points @ hypercube sampling)
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TEST CASE: CUMENE PRODUCTION

Benzene \ ,; ¢
+ X - Cumene>
xc

Generate Models: (TP, P) = f1(T", P)

Tr()a.ct(TSP’ P) — f2 (TSp, P)
[rec (TSD, P) — f5 (]1813j P)

Over the Range: 100°F < TP < 250°F
0.82atm <P < 1.36 atm
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14%

12%

10%

8%

6%

4%

Maximum realtive error

2%

0%

GENERATING THE SURROGATES

] Initial data set: 3 points —xC
Final data set: 23 points —Treact
1 —Frec
| 2
- ¥
1 2 3 4 5)
Iterations

Maximum error found at each iteration may increase

— Due to the derivative-free solver is given more information at each iteration
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FINAL MODELS

C(s _ S S — sp\3 3.08
(TP, P) = (2;10?515)06?;;(;@()2.08 f) (T°P) f(? 12-1077) (T°P)" + 55
i 12.2 7.06
P? — e ey 0427
react (sp _ 77.1
Treei(T*P, P) = ‘55 +780.0
Free(reP, Py = (5.37-10%) v/0.01T5P \/1.22 P — 163.0 TP _
(6.26-10%) (0.017°P)3 (1.22P) 4 20050— 4 L

2055.0 4 (2.76-10~4) (T0)? — L4927 _ 022 P2 (T=P)* +

P2
. —4 sp\3
(5.44 1OP3) (r-r)” (1.28 . 10_5) p3 (TSp)S
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PROCESS OPTIMIZATION

Propylene

/X T
TSP — 250°F
P = 0.82atm
¢ =0.981
Tt = 828.1°F
1b
FreC — 645.7 —
hr
1b
hY = 5.00- 10" —
i hr
A = 7,706ft>
L\ Yy,
Y

< 5.2%error
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PROCESS OPTIMIZATION

Propylene

/X 33?411311113108

TSP = 250°F TSP — 250°F
P = 0.82atm P = 1.36atm
¢ =0.981 Y = 0.964
Treact — 898 1°F Treact — 848 9°F
1b 1b
e — 645.7 — Fre¢ — 373.16—
hr hr
1b 1b
m" = 5.00- 107 — mY = 4.04 - 10*—
hr hr
A = 7,706ft> A = 2, 364t
1§ ) \ )
Y A 'd
< 5.2%error < 3.0%error
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PROCESS OPTIMIZATION

Propylene
33?4 tilities min CaptialCost
/X s.t. 2€ > 0.95\
TSP = 250°F TSP = 250°F TP =168.1°F
P = 0.82atm P = 1.36atm P = 0.82atm
¢ = 0.981 Y =0.964 Y = 0.948
Treact — 898 1°F Treact — 848.9°F Treact — 860.4°F
1b 1b 1b
e — 645.7— Fre — 373,16 — Frec — 1792.7—
6 57hr 373 Ghr 7 7hr
Ib 1b 1b
mY = 5.00-107— mY =4.04-10* = m = 4.40-10*—=
hr hr hr
A = 7,706ft> A = 2, 364t A = 2, 310ft>
1§ ) \ ) G Y,
h'd A 'd h'd
< 5.2%error < 3.0%error < 5.7%error
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CONCLUSIONS

* The algorithm we developed is able to model black-box
functions for use in optimization such that the models are
v’ Accurate
v’ Tractable in an optimization framework (low-complexity models)
v Generated from a minimal number of function evaluations

e Surrogate models can then be incorporated within a
optimization framework flexible objective functions and
additional constraints

ALAMO

Automated Learning of Algebraic Models for Optimization

2= 1) min f(x)
st. g(z)=0
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