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OBJECTIVE: PROCESS SYNTHESIS 
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OBJECTIVE: PROCESS SYNTHESIS 
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Derivative-based 
optimization 

Data Models 

Black box 
function 

(simulation,  
experiment, etc.) 

Automated Learning of Algebraic 
Models for Optimization 

ALAMO 



Carnegie Mellon University 5 

• Build a model of output variables z as a function of input 
variables x over a specified interval 
 
 
 

 
 
 
 

• Desired model traits: 
 Accurate 
 Tractable in algebraic optimization: Simple functional forms 
 Generated from a minimal data set 

MODELING PROBLEM STATEMENT 

Black box 
function, 

simulation, or 
experiment 

Independent variables: 
Operating conditions, Inlet flow 

properties, Simulation or experimental 
geometry, Parameters, etc. 

 

Dependent variables: 
Efficiency,  Outlet flow conditions, 

Conversions, Heat flow, etc. 
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• Goal: To generate an initial set of input variables to evenly 
sample the problem space 
 
 

 
 
 

• Design of experiments: Latin hypercube design 
– Space-filling design 

 
 

DESIGN OF EXPERIMENTS 

2D 
D=2 
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• After running the design of experiments, we will evaluate 
the black-box function to determine each zi 
 
 
 
 
 
 
 

INITIAL SAMPLING 

Black-box 
function, 

simulation, or 
experiment 

Initial 
training set 
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• Goal: Identify the functional form and complexity of the 
surrogate models 
 

• Functional form:  
– General functional form is unknown: Our method will identify 

models with combinations of simple basis functions of the following 
forms 
 
 
 
 
 
 

– Surrogate model will have the form: 

MODEL IDENTIFICATION 
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• Let’s assume we know a priori  the complexity or number of 
terms in the model, T 
 

• Identify the optimal T subset of basis functions such that we 
 Minimize model error 
 Ensure that only T terms are present in the model 
 Enforce the linear least squares condition for the chosen T basis functions 

PART A: FIND A FUNCTIONAL FORM 

Ordinary linear least squares problem: 
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Solve for 
a subset of 
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Choose terms to 
minimize the 
model error 

BEST T SUBSET MINIMIZATION MODEL 
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Exactly T terms 
in the model 

Choose terms to 
minimize the 
model error 

BEST T SUBSET MINIMIZATION MODEL 
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Defining the 
subset of basis 
functions used 

Exactly T terms 
in the model 

Choose terms to 
minimize the 
model error 

BEST T SUBSET MINIMIZATION MODEL 
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• In reality, we don’t know T a priori 
• How to find T: 

– Corrected Akaike Information Criterion (AICc) 
• Gives an estimate of the difference between a model and the true 

function 

 

PART B: FIND MODEL COMPLEXITY 

Accuracy    +    Complexity 
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• Goal: Search the problem space for areas of model 
inconsistency or model mismatch 
 

• More succinctly, we are trying to find points that maximize 
the model error with respect to the independent variables 
 
 
 
 
– Optimized using a black-box or derivative-free solver (SNOBFIT) 

ADAPTIVE SAMPLING 

Surrogate model 
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• Goal: Search the problem space for areas of model 
inconsistency or model mismatch 
 

• More succinctly, we are trying to find points that maximizes 
the model error with respect to the independent variables 
 
 
 
 

ADAPTIVE SAMPLING 

Black-box function 
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• Goal: Search the problem space for areas of model 
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• Goal: Search the problem space for areas of model 
inconsistency or model mismatch 
 

• More succinctly, we are trying to find points that maximizes 
the model error with respect to the independent variables 
 
 
 
 

ADAPTIVE SAMPLING 

Black-box function 
Data points 
Surrogate model 

True 
minimum 

Current 
surrogate 
optimum 



Carnegie Mellon University 29 

• Goal: Search the problem space for areas of model 
inconsistency or model mismatch 
 

• More succinctly, we are trying to find points that maximizes 
the model error with respect to the independent variables 
 
 
 
 

ADAPTIVE SAMPLING 

Black-box function 
Data points 
Surrogate model 

New sample point 
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the surrogate 

Model 
error 
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• Goal: Search the problem space for areas of model 
inconsistency or model mismatch 
 

• More succinctly, we are trying to find points that maximizes 
the model error with respect to the independent variables 
 
 
 
 

ADAPTIVE SAMPLING 

Black-box function 
Data points 
New surrogate model 

Reducing the order of the 
model is not always 

desirable 
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ADAPTIVE SAMPLING FLOWSHEET 
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• Compare the method with and without adaptive sampling: 
 
 
 
 
 
 
 
 

 
• Two sets of known equations made up of functions 

– Present in the algorithm’s basis set 
– Not present in the algorithm’s basis set 

 

ACCURACY VALIDATION 
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TEST CASE: CUMENE PRODUCTION 

Generate Models: 

Over the Range: 

Benzene 
Propylene 

Cumene 
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• Maximum error found at each iteration may increase 
– Due to the derivative-free solver is given more information at each iteration 

GENERATING THE SURROGATES 
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FINAL MODELS 
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PROCESS OPTIMIZATION 
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• The algorithm we developed is able to model black-box 
functions for use in optimization such that the models are 
 Accurate 
 Tractable in an optimization framework (low-complexity models) 
 Generated from a minimal number of function evaluations 

• Surrogate models can then be incorporated within a 
optimization framework flexible objective functions and 
additional constraints 

 

CONCLUSIONS 

Automated Learning of Algebraic Models for Optimization 

ALAMO 
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