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Abstract

The goals of optimal decision-making often con�ict with high-�delity prediction tar-

gets when designing and optimizing chemical systems. If algebraic �rst-principles

models are unreliable or unavailable, conventional methods require compromising ei-

ther decision or prediction capabilities. To make high-level decisions, an engineer

might sacri�ce model �delity to solve design problems with large length and time

scales or complicated optimization topologies. Alternatively, to ensure high predic-

tion capabilities, the scope of the optimization problem may be diminished to accom-

modate high-�delity, black-box models due to limited feasible regions and discrete

optimal decisions.

The focus of this thesis is to investigate a third option: surrogate-based opti-

mization. We extend the decision compatibilities of of mixed-integer optimization

frameworks to include high-�delity representations of modular process elements. To

do this, we substitute high-�delity simulators and experiments with sets of tailored

surrogate models. In Chapters 2 through 4, we investigate the identi�cation of sim-

ple, accurate surrogate models generated using a theory- and data-driven approach.

The two key aspects of surrogate modeling are model identi�cation and the data set

that forms it foundation.

We are interested in developing a technique that learns models that are (a) as

accurate as possible and (b) as simple as possible. Requirement (a) is obvious, while

requirement (b) is driven by our desire to utilize the model in a larger multi-scale

model for optimization, simulation, or analysis. We implement a best subset re-

gression method to select a subset of nonlinear basis functions that when combined,

serve as a �exible underlying functional form for the surrogate model. Using a global

approach to symbolic regression, we consider a more �exible nonlinear functional sur-

rogate model using only the speci�cation of simple mathematical operators such as

addition, subtraction, multiplication, and division.
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Data and information are the foundation of an empirical model. The aim of

empirical data collection is to achieve the highest model quality from a given data

set. To do this, we propose a novel approach to an iterative design of experiments that

adaptively searches the surrogate model and black-box problem space to locate areas

of model weakness, or high model error. We augment the empirical data set to include

theory-based information, response bounds, and physical restrictions by introducing

a constrained regression method to enforce these physical limits. This combination

of data- and theory-driven techniques leads to high surrogate model quality.

We introduce an implementation of several modeling and data sampling method-

ologies to perform black-box surrogate modeling. We use this implementation for

the design and optimization of a post combustion carbon capture process. We use

a surrogate-based approach to systematically and rapidly screen processes to com-

pare best-case scenarios with the aim of identifying the most promising selections of

technology combinations.

We demonstrate the accuracy, parsimony, and e�ciency of the surrogate model-

ing methods through numerous example problems and computational studies. The

e�cacy of these models in surrogate-based optimization is observed on a case study

and industrial carbon capture application.
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Chapter 1

Introduction

1.1 Motivation

The balance between optimal decision-making and model �delity remains a challenge

when designing and operating complex, nonlinear chemical systems. A process sys-

tems engineering model is a physically feasible system that minimizes or maximizes

a cost objective. In practice, engineers are often forced to make one of two primary

modeling concessions if they lack a su�cient algebraic, �rst-principles representation.

One choice forgoes the accuracy of simulated, experimental, or chemical plant data

in favor of simpli�cations, such as linearity, to capture process trends when solving

problems with large length and time scales and/or complicating optimization topolo-

gies [13]. Alternatively, the scope of the optimization problem is sacri�ced to accom-

modate high �delity models when feasible regions and discrete optimal decisions are

limited.

We propose an alternate third choice: surrogate-based optimization of high-�delity

black-box problems using tailored surrogate models. In this work, we expand the

scope of mixed-integer optimization to solve problems using high-�delity simulators

by identifying a set of surrogate models that are tailored for algebraic optimization.

1



These simple and accurate surrogate models are incorporated into a larger, determin-

istic optimization framework. We focus on two key aspects of surrogate modeling:

model identi�cation and the e�cient storage of data and information.

Advanced optimization techniques enable high-level system decisions such as net-

work con�guration, reactor type selection, and other discrete selections to be opti-

mized alongside continuous conditions such as �ow rates, temperatures, and geome-

tries. However, these conventional optimization methods, known as derivative-based

or algebraic solvers (e.g., CONOPT [29], IPOPT [104], and SNOPT [38]), require the use of

derivative information to discover feasible optimal solutions. More advanced global

optimization methods, such as BARON [96], require an algebraic functional form to

locate and certify a globally optimal solution. Optimization formulations suitable for

these techniques are comprised of algebraic objectives and constraints that relate deci-

sion variables through �rst principles models, mass and energy balances, unit models,

and design constraints. If relationships or feasible regions cannot be de�ned through

�rst-principle derivation, simpli�cations or approximate relationships are substituted.

Typically, these simpli�ed models lack �delity and are an incomplete representation

of process trends, particularly for the types of highly nonlinear relationships that are

common to chemical engineering problems.

Some local optimization algorithms are capable of solving in the absence of a com-

plete algebraic model if derivatives can be evaluated or approximated. Unfortunately,

solver reliability degrades as the complexity of the associated black box models in-

creases. In practice, direct optimization is di�cult without specialized algorithms.

Due to the high sampling requirements of derivative estimation, the accuracy and

e�cacy of such solvers are limited by noisy and/or costly function evaluations that

arise naturally in real-world and numerical simulations [18].

Despite the optimization challenges they provide, engineers have long used chem-

ical process simulation and computational �uid dynamic methods industrially and

2



academically to design and test systems and processes [30, 80, 90, 100]. The struc-

ture of these simulations or black boxes yields high levels of accuracy which lends

well to predictive use, but imposes challenges when used for optimization and de-

sign [7, 32, 33]. Derivative-free optimization (DFO) is intended to fully or partially

overcome the lack of an algebraic model and, in some cases, noisy and/or costly

function evaluations. These algorithms are designed for optimization problems when

derivatives are unavailable, unreliable, or prohibitively expensive to evaluate [50, 87].

To combat costly function evaluations, DFO solvers attempt to achieve an optimal

feasible point using a minimal number of black-box function calls. In practice, how-

ever, these methods are unable to �nd optimal solutions when the number of degrees

of freedom exceeds about ten, even in the absence of constraints and integer variables,

as shown in a recent computational study [87].

Our work links high �delity black box evaluators to advanced optimization routines

through the use of algebraic surrogate models. Often, we utilize black boxes in a

modular system by �rst disaggregating the process into smaller process groups that

contain one or more process units. This addresses challenges commonly associated

with black-box simulation robustness and results in more accurate surrogate models.

Lastly, process decomposition and surrogate modeling allow for access to sophisticated

optimization models that arise from a modular structure, including superstructure

and discrete optimization. Connectivity and process alternative decisions can be

determined using surrogate models in a derivative-based optimization structure.

Prior works in the process systems engineering literature have accomplished

surrogate-based optimization by relying upon existing modeling schemes, typically

kriging and neural networks, to build surrogate process models that can be optimized

with derivative-based optimization techniques. We extend such existing modeling

methodologies by introducing novel data-and-theory-driven model-building tech-

niques. The tailored structure of the surrogate models generated by the proposed
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methods facilitates algebraic optimization. Our surrogates are composed of appro-

priate functional forms that (a) accurately represent the underlying distribution, (b)

are as simple as possible, and (c) make e�ective use of all available information.

1.2 Surrogate-based optimization

Surrogate-based optimization involves the solution, ideally rigorous, of optimization

formulations where one or more of the objectives or constraints are based on a sur-

rogate model. The surrogate model(s) serve as a proxy for corresponding black-box

aspects of the problem. This could relate to one or more black-box constraints and/or

a black-box objective. Data from the black box is used to build the surrogate models;

while, other connectivity variables and algebraic constraints are represented directly

in the optimization formulation.

Frequently, a single model of the objective function is approximated before op-

timization; however, that need not be the case and the constraint set may also be

modeled [28, 45, 79]. Work has been done to �rst disaggregate a black-box simulation

into distinct blocks and model each block separately, ensuring that all relevant con-

nectivity variables are also modeled [18, 43]. By disaggregating the process, smaller,

more robust, simulation units are explored. These disaggregated process units can be

combined with disjunctive constraint sets and blocks linked via connectivity variables

to formulate complex mixed-integer optimization models.

Surrogate-based methods have been e�ective in solving problems over an entire

process system [28, 45, 79] and over a modular or disaggregated process [18, 43].

Palmer and Real� [79] have considered the indirect optimization of steady-state sim-

ulators using kriging surrogate models. David and Ierapetritou [28] use full process

kriging-based models to identify global solutions and re�ne them using local response

surfaces around the optima. Huang et al. [45] have addressed uncertainty in black-
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box systems using full process kriging models. Caballero and Grossmann [18] have

investigated iterative modular �owsheet optimization using kriging models to repre-

sent process units with low-level noise. Recently, Henao and Maravelias [43] have

demonstrated success modeling individual chemical process units using arti�cial neu-

ral networks.

1.3 Surrogate modeling

Surrogate models�known in some �elds as metamodels or reduced-order models�

are algebraic abstractions of a response or black-box output variable as a function

of predictor or black-box input variables from data obtained from simulations or ex-

periments. In this work, we investigate response models with explicit functions of

predictor variables, however, the proposed methods can be extended to implicit mod-

els. Determining the correct model and best data set are central to the surrogate

modeling problem. Model identi�cation includes the problem of �nding the model's

functional form and/or parameter selection for a given a set of data. Equally impor-

tant, the selection of the most e�ective data set can play a signi�cant role in surrogate

model quality.

Surrogate models can be either interpolative, where the model passes through

each data point, or regressive, where a model is chosen to minimize some function of

the distance from each the data point. Using regressive methods allows for modeling

in the presence of error or noise in the underlying function [77]. A surrogate model

is further de�ned by the region over which the predictor space it is modeled. A

surrogate model or set of surrogate models is considered global if they represent the

data over the entire problem space and local if they represent data over a subregion

of the problem space.
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1.3.1 Model form and parameter selection

A surrogate model is de�ned by its functional form and parameter levels. The form

of a surrogate model is designated by the set of operations that make up each term

or basis function in the model (i.e. linear term, quadratic term, exponential term,

etc.) and the complexity of the model, which is often measured by the number of

parameters used in the model. The parameters in a surrogate model are continuous

decision variables in the surrogate model generation problem. They are chosen to

maximize a goodness-of-�t or solution quality metric; commonly, this is done by

minimizing the squared error.

In regression problems, the speci�cation of linear or nonlinear regression is de�ned

by the relationship between the regressor and model parameters. In contrast, the

linearity or nonlinearity of a surrogate model relates to the relationship between

the regressor and predictor variables; therefore, a nonlinear model could be solved

using linear regression if the model is a linear combination of nonlinear terms. For

linear regression, the response variable is proportional to all parameters for a given

data point; in other words, they are coe�cients for each linear or nonlinear term.

If the response variable is related nonlinearly to one or more of the parameters, the

regression problem is considered nonlinear. For example, nonlinear regression would

be required to solve for the parameters β in a surrogate with the following form

β1 x+ β2 exp(x/β3).

Common surrogate modeling methods range from simple linear or quadratic re-

gression models to complex kriging [25, 65] and arti�cial neural networks [42]. Despite

their advantageous optimization characteristics, simple models may not represent the

highly nonlinear nature of chemical processes. In contrast, more complex models sat-

isfy accuracy requirements but result in rough, complex functions that are di�cult

to solve using provable derivative-based optimization software.
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Ideally, we would strike a balance between model accuracy and optimization

tractability, but knowledge of this trade-o� is limited by �exible functional forms.

To address this uncertainty, we automate the selection of a functional form that best

represents the data by identifying combinations of simple terms or basis functions that

de�ne a low-complexity, accurate functional form for each response. In Chapter 2,

we explore model selection methods to identify functional forms from a large, �xed

set of alternative structures. We generate global surrogate models using model and

parameter selection methods that require the use of a best subset selection techniques

to perform linear regression using nonlinear basis functions. We expand the search

space of nonlinear model forms in Chapter 4 to identify model forms more �exibly

by regressing the functional form of the model itself using the principles of symbolic

regression.

1.3.2 Use of data and information

A regression model is only as strong as the information and data that it was built

upon. The goal of regression methods is to select a model that best matches the

underlying data distribution over a pre-speci�ed problem-space or range of predictor

variables. However, perfect information about a black box is not available, so solution

quality is measured over a �nite set of training data points. In least squares regression

problems, the model form and parameters are chosen to minimize the squared error

between the model and the set of training points. Consequently, the training objective

is then an estimation of the true objective and the accuracy of this estimation is

subject to the placement of the training points. To that end, signi�cant work has

been done in the area of design of experiments to select sample points that will

generate the best surrogate models.

A design of experiments (DOE) deals with the selection of predictor levels to

evaluate the black box [16]. The quality of a surrogate model is, in part, re�ected
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in the quality of a DOE. Given a �xed data set size, a well-chosen DOE can result

in greater accuracy. Similarly, given a model accuracy goal, a well-chosen DOE can

result in fewer black box evaluations required. Perfect information would be ideal to

train a model; however, with limited computational resources, function evaluations

must also be limited.

Experimental design methods can be classi�ed as either �xed or iterative. Fixed

DOEs serve to generate a set of design points, evaluate these points, then move on

to a modeling stage. Common �xed DOEs are random points, fractional designs [92],

Latin hypercubes [74], and orthogonal arrays [31]. Without prior system knowledge, it

is not possible to know how much information is needed or where data points should

be sampled a priori. Therefore, iterative DOEs may be advantageous where the

experimental design and modeling steps are repeated as desired. These approaches

use both the current data set and the regression model to locate areas of di�cult

approximation by locating poorly sampled regions [81], areas of high nonlinearity, or

areas of high uncertainty [36, 98]. We expand upon iterative design ideas by selecting

new sample points in areas of model divergence or increased model mismatch. By

doing this, we sample data only where it is most needed and terminate the sample

procedure when no new data is required.

To leverage additional system knowledge, we use freely-available information be-

yond empirically sampled data. We supplement empirical data with theoretical a

priori knowledge, including limits on the response variables; known relationships be-

tween response; and predictor variables; and relationships among responses. The

combination of data-driven modeling and theory-driven a priori knowledge results in

higher quality of surrogate models.
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1.4 Outline of thesis

The main goal of our research is the expansion of complex optimization formulations

to incorporate high �delity experiments or simulations through the use of tailored

accurate, low-complexity surrogate models.

In Chapter 2, we introduce the surrogate model learning techniques used through-

out this thesis. Accurate, parsimonious surrogate models are generated using an op-

timization approach to best subset model selection for the identi�cation of functional

forms and parameter levels. We introduce an error maximization sampling proce-

dure to perform an iterative design of experiments by locating problematic regions.

We describe ALAMO, the computational implementation of the proposed methodology,

along with examples and extensive computational comparisons between ALAMO and a

variety of machine learning techniques.

In Chapter 3, we propose a constrained regression methodology that utilizes a

priori system knowledge and empirical data to generate more accurate and physically

realizable models. We introduce a set of constraints that can be applied generally to

regression methods to infer parameter relationships using response and predictor re-

lationships. We present several sources of relationships including bounding response

variables, safe extrapolation, thermodynamic limitations, and enforcing favorable nu-

merical properties. We also demonstrate the solution quality improvements from

these regression restrictions through computational experiments.

In Chapter 4, we extend the functional form of basis function studied in Chapter 2

to the more �exible selection of model nonlinearities. In Chapter 2, the model's func-

tional form is limited to combinations of predetermined basis functions. In Chapter 4,

we allow increased modeling freedom and nonlinearity by learning the functional forms

and corresponding model parameters simultaneously given only a set of operations

such as addition, subtraction, multiplication, and division. Moreover, we propose an

optimization formulation for the global optimization of the symbolic regression prob-
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lem. Finally, we demonstrate the e�cacy of this method using an illustrative and two

literature examples.

In Chapter 5, we demonstrate the previously described techniques on a the op-

timization of an industrial post combustion carbon capture process. We detail the

superstructure formulation used to optimize this process. The surrogate modeling

techniques described in this thesis are used to learn sets of algebraic surrogate mod-

els of several reactors over di�ering technologies. We present results from reactor

simulations and surrogate models that are currently used at the National Energy

Technology Laboratory for superstructure optimization.

Finally, in Chapter 6, we summarize the contributions of this thesis and o�er

concluding remarks.
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Chapter 2

Learning surrogate models for

simulation-based optimization

We address a central problem in modeling, namely that of learning an

algebraic model from data obtained from simulations or experiments. We

propose a methodology that uses a small number of simulations or experi-

ments to learn models that are as accurate and as simple as possible. The

approach begins by building a low-complexity surrogate model. The model

is built using a best subset technique that leverages an integer program-

ming formulation to enable the e�cient consideration of a large number

of possible functional modeling components. The model is then improved

systematically through the use of derivative-free optimization solvers to

adaptively sample new simulation or experimental points. We describe

ALAMO, the computational implementation of the proposed methodology,

along with examples and extensive computational comparisons between

ALAMO and a variety of machine learning techniques, including Latin hy-

percube sampling, simple least squares regression, and the lasso.
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2.1 Introduction

Chemical process simulation and computational �uid dynamic methods have been

used industrially and academically to design and test systems and processes [12, 13,

30, 80, 90, 100]. These numerical models o�er high levels of accuracy and precision in

their predictive capabilities at the cost of requiring specialized simulation software.

The structure of these simulations lends well to prediction but can impose challenges

when used in an optimization or design setting [7, 32, 33]. This chapter considers

the optimization of processes via black-box function evaluators, including simulations

and experiments. The general optimization problem we address is

min f(x)

s.t. g(x) ≤ 0

x ∈ A ⊂ Rn

where we desire to minimize a cost function, f(x), with respect to the degrees of

freedom x. These degrees of freedom can range from continuous decisions concerning

operating conditions and equipment geometry to discrete decisions about process

alternatives and �owsheet con�guration. Furthermore, they are required to satisfy

a set of constraints g(x) ≤ 0 as well as box constraints A, which include lower and

upper bounds. We assume that one or more of the functions f and g are not available

directly in algebraic form, but, for any given value of x, the corresponding f(x) and

g(x) can be computed via an input-output black box.

The above optimization problem gives rise to three primary challenges. First,

the standard approach to optimization, utilizing derivative-based or algebraic solvers

(e.g., CONOPT [29], IPOPT [104], and SNOPT [38]), requires the use of derivative

information. However, the objective and/or constraint set must be treated as black

boxes since algebraic models and derivatives are not directly available for many sim-
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ulation packages. Such simulators often incorporate proprietary software, numerical

integrators, lookup tables, and other algorithmic constructs whose algebraic forms

are unavailable for optimization. More advanced global optimization methods, such

as BARON [96], require an algebraic functional form to locate and certify a globally

optimal solution. In either case, algebraic forms for each function f and g are re-

quired to �rst locate and then classify feasible and optimal decision variables. Some

standard solvers are capable of optimizing in the absence of an algebraic model if

derivatives can be evaluated or approximated. In fact, IPOPT has been used to opti-

mize ASPEN-based simulations directly [21]. However, as simulations become more

complex, the reliability of the simulator often degrades. Thus, direct optimization

is impossible without specialized algorithms designed to recover from simulator con-

vergence failures. Even perfectly robust simulations exhibit a third challenge: costly

and/or noisy function evaluations. Due to the high sampling requirements of deriva-

tive estimation, costly function evaluations hinder the use of such solvers. Noisy

function evaluations that arise naturally in numerical simulations and experiments

limit the accuracy and e�cacy of derivative estimations [18].

Derivative-free optimization (DFO) o�ers a class of algorithms designed to solve

optimization problems when derivatives are unavailable, unreliable, or prohibitively

expensive to evaluate [50, 87]. These solvers attempt to locate an optimal feasible

point using a minimal number of black-box function calls. Although DFO methods

can be used to address black-box models with costly and noisy function evaluations,

these methods are often unable to �nd optimal solutions when the number of degrees

of freedom exceeds about ten, even in the absence of constraints and integer variables,

as shown in a recent computational study [87].

To overcome the challenges of simulation-based optimization, signi�cant work

has been done to generate surrogate models (known in some �elds as metamod-

els or reduced-order models) of the black-box functions f(x) and/or g(x) [49, 105].
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Most commonly, these methods are applied to purely continuous problems. After

generation, the abstracted models can be optimized using traditional algebraic or

derivative-based solvers. Previous work incorporates existing techniques from ma-

chine learning and statistics; the resulting surrogate-based methods are categorized

by modeling method. Reduced-order modeling, the production of a low-dimensional

system (i.e., reduced-order model�ROM) that has similar response characteristics to

the high-�delity simulation or system [6], is the most commonly-used surrogate mod-

eling technique. The goal of reduced-order modeling is to create an approximation of

a black box that necessitates far less CPU time for each function evaluation. In the

context of derivative-based optimization, these ROMs are required to have a compact

and algebraic form that can be exploited by standard solver packages.

Most often, a single model of the objective function is approximated before opti-

mization; in a few cases, the constraint set is modeled as well. Additionally, some ex-

isting techniques disaggregate a black-box simulation into distinct blocks and model

each block separately before optimization, ensuring that all relevant connectivity

variables are modeled. By disaggregating the process, smaller, more robust, simu-

lation units are explored. These disaggregated process units can be combined with

disjunctive constraint sets and blocks linked via connectivity variables to formulate

complex mixed-integer optimization models. Signi�cant work has been done using

kriging models to either model the full system [28, 45, 79] or the disaggregated pro-

cess [18, 43]. Palmer and Real� [79] have considered the indirect optimization of

steady-state simulators using kriging surrogate models. In the same vein, David and

Ierapetritou [28] use full-process kriging models to locate global surrogate model so-

lutions and re�ne them using local response surfaces around the optima. To address

uncertainty concerns in black-box systems, Huang et al. [45] have used kriging mod-

els on full processes. Caballero and Grossmann [18] have investigated disaggregated

(modular) �owsheet optimization using kriging models to represent process units with
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low-level noise. Recent work by Henao and Maravelias [43] has shown success mod-

eling individual chemical process units using arti�cial neural networks.

Previous work has focused primarily on developing models that are highly accu-

rate. As a result, unless physical simpli�cations are available, reduced-order models

often have a bumpy and complex functional form which is disadvantageous in alge-

braic optimization where smaller, compact algebraic forms are desirable. Our work

aims to develop accurate surrogates that are tailored to reduce the di�culty and im-

prove the tractability of the �nal optimization model. Because the �nal purpose of

our surrogate models is algebraic optimization, we strive to identify surrogates com-

posed of functional forms that can be easily incorporated into larger mathematical

programs without the di�culties imposed by the inherent complexity of standard

ROMs.

To address the black-box nature of these simulations as well as the cost and

limited robustness of each function evaluation, we have developed a novel surrogate

modeling method. To promote simulation robustness, either a single unit or a small

set of units is considered. If the existing simulation is complex, such as a complete

�owsheet, disaggregation into smaller sections is advantageous. Subsequently, using

an adaptive sampling procedure, low-complexity algebraic models are built, tested,

exploited, and improved using a combination of derivative-based and derivative-free

optimization solvers, machine learning, and statistical techniques. Surrogate models

generated using these techniques can be used in an algebraic optimization framework

with �exible objective functions and additional constraints.

We developed ALAMO (Automated Learning of Algebraic Models for Optimiza-

tion), a software package designed to automate the proposed methodology. ALAMO

interfaces with a user-de�ned simulator and problem space to iteratively model and in-

terrogate the simulation. Consequently, our �exible implementation is able to identify

accurate, low-complexity algebraic models that approximate a variety of high-�delity
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systems. Similar existing modeling packages, such as SUorrogate MOdeling lab tool-

box (SUMO) [40], fail to generate surrogate models with su�ciently low complexity.

Eureqa [89] can be used to search for low-complexity models; however, it operates on

a �xed data set and can often lead to comparatively complex functional forms. The

proposed methodology allows ALAMO to generate compact models that improve and

validate the surrogate models by adaptively sampling the simulation.

Previous works in the process systems engineering literature have approached

simulation-based optimization by relying on existing modeling schemes, mostly krig-

ing and neural network modeling, to build surrogate process models that can be

optimized with derivative-based optimization techniques. In the current chapter, we

depart from the use of existing modeling methodologies. The primary contribution of

this work is to introduce a novel model-building methodology that identi�es highly-

accurate surrogate models tailored for optimization tractability.

The remainder of this chapter is organized as follows. In the next section, we

discuss the proposed model-building strategy in detail. To better explain the mod-

eling steps involved, we include an illustrative example. Subsequently, we present

computational results to evaluate the accuracy and e�ciency of the proposed ap-

proach and compare our strategy with common surrogate modeling techniques in the

machine learning literature. Finally, the proposed methodology is demonstrated on

an industrial case study that quanti�es the environmental and economic trade-o�s of

post-combustion carbon capture systems.

2.2 Proposed methodology

To address challenges commonly associated with black-box simulation robustness,

the process may be disaggregated into smaller process groups that contain one or

more process units. This step enables access to more sophisticated optimization
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models, including superstructure optimization and more complex problem topologies,

that arise from this modular structure. Lastly, models generated from less complex

systems or smaller process blocks are generally more accurate than those generated

for larger process systems. The connectivity and process alternatives decisions can be

determined using the surrogate models in a derivative-based optimization structure.

After process disaggregation, we identify a set of surrogate models approximating

relevant responses for each block. The responses zk, k ∈ K, (outlet material and en-

ergy stream properties, e�ciencies, design requirements, etc.) are modeled as a func-

tion ẑk(x) of input variables xd, d ∈ D, which become optimization decision variables

(inlet material and energy stream properties, operating conditions, unit geometry,

etc.). We assume that the problem domain is bounded for each input variable. The

surrogate models for each block can be combined with an algebraic objective, design

constraints, and material and energy balances to formulate an algebraic optimization

problem.

Surrogate models are constructed using an iterative method as depicted in Fig-

ure 2.1. First, an initial design of experiments is generated over the problem space

and the simulation is queried at these points. In the scope of this work, the speci�c

design of experiments used does not play a strong role in the �nal solution. This

is because the initial sample set is small and adaptively improved as the procedure

progresses, leaving a data set that bears little resemblance to the initial design of

experiments. In the included example cases and experimental studies, we use either

Latin hypercube sampling [74] or a 2-level factorial design [92] for this step.

Next, we build a simple, algebraic model using this initial training data set. The

empirical model error, i.e., the deviation of the model from the data, can be calculated

using standard statistical techniques. However, the true error, i.e., the deviation of

the model from the true system, is unknown. Moreover, we have no quanti�cation of

model accuracy and have not demonstrated a su�cient sampling of the problem space.
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Figure 2.1: Algorithmic �owchart
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The current surrogate model is tested subsequently against the simulation using an

adaptive sampling technique that we call error maximization sampling (EMS). If the

sampling technique discovers model inconsistency larger than a speci�ed tolerance,

the newly sampled data points are added to the training set. The surrogate models

are iteratively rebuilt and improved until the adaptive sampling routine fails to �nd

model inconsistencies.

This section outlines the algorithms and strategies used to generate accurate, low-

complexity surrogate models and re�ne them iteratively through adaptive sampling

techniques.

2.2.1 Surrogate model generation

For the modeling problem, we have a set of N training points; each training point

i = 1, . . . , N has a set of input data xid, d ∈ D, and a set of responses zik, k = 1, . . . ,m.

We assume that the underlying functional form of the response surfaces is unknown.

We would like to generate a model for each response with su�cient complexity to

model the simulation accurately while maintaining adequate simplicity to ensure that

the resulting optimization model is tractable in an algebraic optimization framework.

For example, surrogate modeling techniques such as kriging [25, 65] and ANNs [42]

satisfy accuracy requirements but result in rough, complex functions that are di�cult

to solve using provable derivative-based optimization software. On the other end of

the spectrum, linear regression models may not represent the highly nonlinear nature

of chemical processes despite their advantageous functional simplicity.

We strive to strike a balance between model accuracy and optimization tractabil-

ity, but knowledge of this key trade-o� is limited because the functional form of the

true system is unknown. To address this uncertainty, we identify combinations of

simple basis functions that de�ne a low-complexity, accurate functional form for each

response. The simple basis functions Xj(x), j ∈ B, are selected from �rst principles

19



Category Xj(x)

I. Polynomial (xd)
α

II. Multinomial
∏

d∈D′⊆D

(xd)
αd

III. Exponential and
logarithmic
forms

exp
(
xd
γ

)α
, log

(
xd
γ

)α
IV. Expected bases From experience, simple inspection,

physical phenomena, etc.

Table 2.1: List of potential simple basis function forms

relationships, physical or engineering insights, or statistical �tting functions. Addi-

tionally, a su�ciently small subset of the functional forms available to kriging or ANNs

could be utilized as potential basis functions used to generate a lower-complexity sur-

rogate. In most cases, we allow for constant terms and the basis functional forms

shown in Table 2.1 with user speci�ed values for α and γ. Generally, we choose val-

ues for α and γ that result in either physically reasonable basis functions or common

statistical �tting functions (e.g., α = {±0.5,±1,±2,±3,±4} and γ = {0.1, 1, 10}).

By choosing diverse and varied terms, we expect to provide a su�cient set of potential

basis functions, even if these speci�c functional forms do not match the underlying

functional form exactly. For example, if we model z(x) = 2x3/2 + 1 over x ∈ [0, 1]

we can generate a quadratic surrogate model, ẑ(x) = 1.3x2 − 0.35x+ 2, that has an

average error of 1%. By doing this, we are able to model a wide variety of unknown

functional forms using a small, but �exible, set of basis functions.

The resulting surrogate model is a linear combination of nonlinear basis functions

as follows:

ẑ =
∑
j∈B

βjXj(x) (2.1)

where the jth basis function is multiplied by a corresponding coe�cient βj.
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The ordinary least squares regression problem,

min
β

N∑
i=1

(
zi −

∑
j∈B

βjXij

)2

(2.2)

could be used to solve for the regression coe�cients (model parameters), β, by min-

imizing the sum of the squared model error over the training data points i. In most

cases, the complexity would be prohibitively high if we solve (2.2) to �nd the least

squares regression coe�cients because most or all of the potential bases appear in the

surrogate. Model reduction techniques available from statistics and machine learning

can be used to reduce the number of terms in a model or, similarly, to attain a sparse

regression coe�cient vector. These methods have the added bene�t of reducing the

over�tting observed in the model by allowing only a subset of the available basis

functions.

Model reduction methods can be as simple as backward elimination, forward se-

lection, or stepwise regression to �nd a statistically signi�cant model [17]. However,

these methods can easily miss synergistic e�ects from multiple basis functions that

may exhibit poor �tting properties on an individual basis. To explore all possible

combined e�ects, a best subset method [17] can be used to enumerate models for all

possible combinations of the basis set, and then to choose the best subset of basis

functions using a measure of the model �tness that is sensitive to over�tting. This

method is guaranteed to pick the best model according to the chosen �tness measure;

however, due to the factorial complexity of the modeling algorithm, this method is

often prohibitively expensive for large basis sets. Recent work has seen the addition of

graph theory [35], branch and bound algorithms [34], and QR decomposition [34] to

enhance the scalability and reduce the required computation time of the best subset

problem. Regularization techniques use a squared objective that is penalized by a

function of the magnitude of the regression coe�cients to perform model reduction
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and reduce over�tting. However, as we show in a subsequent section, the commonly-

used lasso regularization (L1-norm penalty function) [99] results in far less accurate

solutions, likely due to the highly coupled and structured set of basis functions.

The general best subset problem can be represented as

(BS) min
S,β

Φ(S, β)

s.t. S ⊆ B

where Φ(S, β) is a surrogate model goodness-of-�t measure for the subset of basis

function S and regression coe�cients β. Using (BS), the following surrogate model

is generated using a subset of the basis functions:

ẑ(x) =
∑
j∈S

βjXj(x). (2.3)

Through a series of reformulation and simpli�cation steps, we convert (BS) into a

form that can be solved e�ciently. First, we de�ne a subset of basis functions using

a vector of binary variables y to designate active and inactive bases. For each basis

function j ∈ B, if j ∈ S, yj = 1; otherwise, j /∈ S and yj = 0. Using this binary

vector, Equation (2.3) can be described over the full basis set B:

ẑ(x) =
∑
j∈B

yjβjXj(x).

The vector y can also be used to reformulate (BS) into a mixed-integer nonlinear

problem:

(BS1) min
β,y

Φ(β, y)

s.t. yj ∈ {0, 1}.
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At this point, it is bene�cial to implement three reformulations to (BS1). To remove

the complication of integer bilinear terms, we replace yjβj with 2|B| big-M constraints

βlyj ≤ βj ≤ βuyj

that use lower and upper bounds, βl and βu, on β. These constraints force βj to zero

if yj = 0, while allowing βj to take on a nonzero value within its bounds if yj = 1.

The bounds on β are chosen using logic from the regularized regression technique: the

lasso [99]. The lasso method penalizes or constrains a least squares objective using

the L1 norm of the β vector. By extending this concept, we can use the solution to

the ordinary least squares regression problem βOLR to infer loose upper and lower

bounds on each value of β. To do this, we set βl = −
∑
j∈B

∣∣βOLR
j

∣∣ and βu =
∑
j∈B

∣∣βOLR
j

∣∣.
The second reformulation stems from the observation that many goodness-of-

�t measures can be decoupled into two parts: (a) model sizing and (b) basis and

parameter selection, as follows:

min
β,T,y

Φ(β, T, y) = min
T

{
min
β,y

[Φβ,y(β, y)|T ] + ΦT (T )

}
(2.4)

Here, ΦT (T ) and Φβ,y(β, y)|T denote the model sizing and basis/parameter selection

contributions to the information criterion, respectively. Hence, we can pose the best

subset selection minimization problem as a nested minimization problem, where the

inner minimization determines the basis functions and coe�cients and the outer min-

imization de�nes the complexity of the model. This results in the following problem
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for some goodness-of-�t measure:

min
T∈{1,...,Tu}

[Φβ,y(β, y)|T ] + ΦT (T )

s.t. min
β,y

Φβ,y(β, y)|T

s.t.
∑
j∈B

yj = T

βlyj ≤ βj ≤ βuyj j ∈ B

yj = {0, 1} j ∈ B

The selection of a model �tness measure is fundamental to the success of these

methods. The measure must re�ect the accuracy of the model while remaining sen-

sitive to over�tting. The goodness-of-�t measure should re�ect the true model error

and not simply the empirical error. As mentioned previously, the empirical error of

a model is the inaccuracy between the model and the data points used to build the

surrogate. As a properly-built model increases in complexity, the empirical error of

a properly trained model is non-increasing. The true error of a model represents the

deviation of the model from the true function. Ideally, this would be the best �tness

measure of a model. However, unless the algebraic form of the true function is known,

the true error can only be estimated. Two common methods to estimate model �tness

are cross-validation and information criteria.

Cross-validation techniques train the model on the majority portion of the data

while reserving a minority of the data for validation. This is done so that cross-

validation is able to test the model on data that was not used to build the model, i.e.,

an independent data set. Generally, this is done several times by reserving di�erent

portions of the data for validation. By doing this, an estimate of the true model error

is achieved.

Like cross-validation, information criteria are sensitive to both the empirical error

and over�tting. Information criteria are able to account for the model complexity
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directly, unlike cross-validation. These measures are tied to the maximum likelihood

method of model parameter estimation [95]; one such case is linear regression given an

assumption of normal distribution on the error. Information criteria are comprised of

several alternatives for order-selection rules including Akaike information criterion [5],

Bayesian information criterion [95], generalized information criterion [95], etc.. Each

information criterion gives a measure of the accuracy versus the complexity of a

model [5, 75]. Due to the large number of basis functions available to the model, the

goodness-of-�t measure used here is the corrected Akaike information criterion [46],

AICc(S, β) = N log

 1

N

N∑
i=1

(
zi −

∑
j∈S

βjXij

)2
+ 2|S|+ 2|S| (|S|+ 1)

N − |S| − 1
(2.5)

which adjusts the Akaike information criterion to account for large basis sets. Equa-

tion (2.5) can be given in the form of (2.4) and can be posed as a nested minimization

problem. We further reformulate the inner objective function to obtain an inner ob-

jective equivalent to the least-squares objective.

Two simpli�cations are made to ensure tractability and e�ciency of the �nal algo-

rithm. First, we leverage the �nite solution space of the outer minimization problem

by parameterizing with respect to T . The inner minimization problem is solved for

increasing values of T until a minimum is reached. To enforce this requirement, we

include the following constraint:

∑
j∈B

yj = T j ∈ B

Second, in order to pose the inner problem as a mixed-integer linear problem (MILP),

we remove the nonlinear objective and replace it with the L1-norm error as follows:

min SE =
N∑
i=1

∣∣∣∣∣zi −∑
j∈B

βjXij

∣∣∣∣∣
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and then replace each instance of |w| in SE by w′ and add constraints w′ ≥ w and

w′ ≥ −w in the formulation. To retain the least squares representation of the resulting

coe�cients, we use the stationarity condition with respect to the parameters β:

d

dβj

N∑
i=1

(
zi −

∑
j∈S

βjXij

)2

∝
N∑
i=1

Xij

(
zi −

∑
j∈S

βjXij

)
= 0, j ∈ S (2.6)

Equation (2.6) is used as a set of big-M constraints to de�ne the basis coe�cients:

−Uj(1− yj) ≤
N∑
i=1

Xij

(
zi −

∑
j∈B

βjXij

)
≤ Uj(1− yj)

where we calculate Uj to be the maximum of
N∑
i=1

Xij

(
zi −

∑
j∈B

βjXij

)
using the

upper and lower bounds of β. Thus, we select active basis functions based on linear

error and the value of the regression parameters based on a squared error.

The reformulations and simpli�cations described above result in the following

MILP:

(M) min
N∑
i=1

wi

s.t. wi ≥ zi −
∑
j∈B

βjXij, i = 1, . . . , N

wi ≥
∑
j∈B

βjXij − zi, i = 1, . . . , N∑
j∈B

yj = T

−Uj(1− yj) ≤
N∑
i=1

Xij

(
zi −

∑
j∈B

βjXij

)
≤ Uj(1− yj), j ∈ B

βlyj ≤ βj ≤ βuyj, j ∈ B

ykj ∈ {0, 1}, j ∈ B

βlj ≤ βj ≤ βuj , j ∈ B.
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Model (M) is used to solve for the best T -term subset of the original set of basis

functions. By solving (M) with a small T and increasing that value until the informa-

tion criterion worsens, the proposed method is able to solve the best subset problem

e�ciently and to generate accurate low-complexity models. Though this technique

is far more e�cient and scalable than the enumerative best subset method, the com-

plexity of these problems increases combinatorially with the number of inputs. If

we allow for, say, �ve levels of α for polynomials and multinomials, up to pairwise

multinomial terms with equal exponents, and γ = 1 (See Table 2.1), a two-, four-,

and ten-dimensional problem will have 20, 59, and 246 potential basis functions, re-

spectively. Despite the fact that MILP problems are NP-hard [103], we have solved

instances with as many as 14 inputs successfully [76].

A detailed outline of the algorithm used to generate the most accurate and simple

model given a �xed data set is included in Algorithm 1.

2.2.2 Adaptive sampling

Adaptive sampling, active learning, or supervised learning is a means of acquiring

information about the response surface or process by querying the system at desired

input levels. Through the careful selection of sample points, more accurate models

can be generated with less sample information. Preferably, perfect information would

be used to train a model. In reality, however, computational resources and available

function evaluations are limited. Without prior knowledge of a black-box system, it

is impossible to know how much information is required or where data sample points

should be located a priori. Yet, techniques exist to utilize insights gained through

previous system knowledge or model structure to sample a system selectively so as to

balance the need for information with the computational cost of that information.

Before we examine our approach, it is worth noting that, generally, a design of

experiments (DOE) can be classi�ed into two categories: single pass and iterative.
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Algorithm 1 Build model

Given a training set of dependent and independent data points [xid, zik] for i =
1, . . . , N, d = 1, . . . , n, k = 1, . . . ,m; initial values for the vector of binary variables,
y0(T ); a list of basis functions to be evaluated, Xj(x) ∀j ∈ B; and relevant tolerance
values

Generate basis value set, Xij ← Xj(xi), for i = 1, . . . , N and j ∈ B
Initialize a high maximum error allowed at each point, emax

for k ← 1 to m do

Generate a set of bounds for βj and Ui
Calculate the maximum terms allowed, maxTerms← max (1,min (N, |B|))
for t← 1 to maxTerms do

Solve (M) for T = t to determine the optimal t basis functions and β
Store β(t) and y(t)
Compute AICc(t)
if t > 1 then

if AICc(t) > AICc(t− 1) then . Information criterion worsened
Set the �nal model complexity T f = t− 1
break

else if
AICc(t)− AICc(t− 1)

AICc(t− 1)
≤ tol2 then

Set the �nal model complexity T f = t
break

else if 1
N
‖zk − ẑk‖

1
2 ≤ tol3 then

Set the �nal model complexity T f = t
break

end if

end if

Update error bounds emax ← 1
N

N∑
i=1

∣∣∣∣∣zi −∑
j∈B

βj Xij

∣∣∣∣∣
end for

end for

return �nal values for β = β(T f ) and y = y(T f )
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Single pass DOE methods, like fractional designs [92], Latin hypercubes [74], and

orthogonal arrays [31], �rst generate a set of design points, evaluate these points,

and then move on to a modeling stage. These methods are computationally e�cient

and are simple to implement, but the resulting surrogate models often lack �delity.

In such cases, single pass models can be re�ned using an iterative approach. Itera-

tive approaches use both the current data set and the current model to locate and

sample complicating areas either by performing exploration-based or exploitation-

based methods [26, 27]. Exploration-based methods aim to sample the problem

space [81] evenly. Exploitation-based techniques sample in di�cult-to-model areas

such as points of high nonlinearity or discontinuity. If the modeling method provides

error estimates (such as kriging [65]) or there is another available error metric, these

estimates can be used to locate areas of high uncertainty [36, 98].

Another relevant �eld of active learning that can be used in a single pass or itera-

tive implementation is optimal design of experiments [82]. This approach is motivated

by knowledge of data modeling techniques. It is possible to estimate the variance of

the �nal model parameters β by calculating a Fisher information matrix, which is a

function of only the input variable values and �nal model functional form. The Fisher

information matrix gives a summary of the amount of data due to model parame-

ters [95]. Optimal design of experiments methods attempt to maximize a function of

this matrix, or minimize its inverse. A key concept in our approach is the �exibility

a�orded through the selection of active and inactive basis functions. Because the �nal

model's functional form is �exible, we have no a priori knowledge of basis function

activity. Consequently, the strength of the optimal design of experiments method is

likely to be diluted by the presence of numerous unused basis functions.

Instead, we interrogate the simulation in locations of model inconsistency us-

ing EMS. Doing this provides us with two important pieces of information: (a) the

location of a data point that helps the next iteration's model accuracy and (b) a
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conservative estimate of the true error of the model. We use this information to both

improve and validate the current model. Algorithm 2 presents the speci�c details of

this procedure.

We pose this sampling technique as a black-box optimization problem to �nd areas

in the problem space that maximize the squared relative model error:

max
xl≤x≤xu

(
z(x)− ẑ(x)

z(x)

)2

(2.7)

While the algebraic form of the current surrogate model is known, the true black-box

value is not; therefore, the entire objective function must be treated as a black box.

This necessitates the use of derivative-free optimization algorithms, a class of algo-

rithms that do not require the availability of analytical expressions for the objective

function and constraints of the problem to be optimized [23]. As shown recently [87],

these methods are most e�ective in low-dimensional cases. Thus, the technique of

decomposing a large simulation into lower-dimensional blocks provides favorable con-

ditions. Since the quality of DFO solutions may su�er in higher-dimensional spaces,

we recommend using less than twenty model variables to ensure strong sampling. As

the derivative-free solver progresses, the error can be calculated at newly sampled

candidate points. If areas of su�cient model mismatch are located, the new points

are added to the training set and the model is rebuilt. At the end of this step, the true

model error can be estimated by what is, e�ectively, holdout cross validation using

the newly-sampled points. If the new true error estimated is above a pre-speci�ed

tolerance, the model is retrained using an updated training set. If the error estimate

is below tolerance, then the proposed approach has converged to a �nal surrogate

model.
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Algorithm 2 Error maximization sampling

Given a set of dependent and independent data points [xid, zik] for i = 1, . . . , N, d =
1, . . . , n, k = 1, . . . ,m and a set of models ẑk(x), k = 1, . . . ,m. Additionally,
prespeci�ed values for range of x, [xmin, xmax]; the minimum number of sample
points, N ems

min ; the maximum number of sample points as a function of N , N ems
max(N);

and a tolerance on the maximum error, tol4, are given.

Calculate the squared error and combined error at each point using the objective

in Equation (2.7), eik ←
(
zik − ẑk(xi)

zik

)2

and Ei ←
m∑
k=1

eik.

Initialize the number of error maximization points added, N ems ← 0
while N ems ≤ N ems

max do

Using a black-box solver (we call it dfo([objective function], [initial objective
values], [initial x values],xmin, xmax,[requested points])) that meets the requirements
listed, request new sample points xreq ← dfo(E(x), Ei, xi, x

min, xmax, N req)

for i← 1 to N req do

Sample simulation at xreq
i to get zreq

i

Append error values, eN+i,k ← e(xreq
i , zreq

ik ) and EN+i ← E(xreq
i , zreq

i )
Update N ems ← N ems + 1 and N ← N + 1
if N ems ≥ N ems

min then

if maxik(eik) ≥ tol4 then
return x, z,N ems

end if

end if

end for

end while

2.3 Illustrative example

To better illustrate the proposed methodology, we provide a simple example modeling

steam density, ρ, as a function of heat duty, Q, in a �ash drum modeled in Aspen

Plus. The thermodynamics of this process are de�ned by the 1995 IAPWS steam

table formulation. We identify a surrogate model, ρ̂(Q) in kg
m3 , as a function of heat

duty from 13, 000W to 40, 000W . The functional form includes basis functions of

the form shown in Table 2.1, where α = 0,±1
3
,±1

2
,±1,±2,±3 and γ = 10, 000W .

This leads to a potential functional form shown below with 13 basis functions:
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ρ̂(Q) = β0 + β1Q+ β2

Q
+ β3Q

2 + β4

Q2 + β5Q
3 + β6

Q3 + β7

√
Q+ β8√

Q

+β9
3
√
Q+ β10

3√Q + β11e
Q

10000 + β12 ln Q
10000

A process schematic is included in Figure 2.2, where water enters a 1 atm �ash

drum at 1 atm and 298K. The source water stream is �ashed into vapor and liquid

products. To facilitate the �ash, heat is added to the drum. Our goal is to �nd

an accurate surrogate model describing the relationship between steam density and

added heat using only the basis functions required to �t the simulated system. This

is done using a minimal but �exible data set.

Figure 2.2: Diagram of �ash drum

The algorithm begins by using a Latin hypercube to select an initial set of data

points over the range of the input variables. For illustration, we consider two data

points over Q ∈ [13000W, 40000W ]. During each iteration, a model is built using a

subset of the basis functions shown above that models the information in the current

data set with enough bases to have high accuracy but not so many as to over �t the

data or have unneeded bases. For this example, in Algorithm 2, we choose N ems
min = 1

and N ems
max(N) to be the greater of 20% of the current data set size and |D|+ 10 = 11.

To further illustrate the model-building step in this method, we look more closely

at the modeling process in the last iteration. At this stage, there are 9 data points

in the training set. To begin, the best model using a single term is established. The

best surrogate model is determined by minimizing the squared error of the model.
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Terms allowed Surrogate model

1
1.524 · 1011

Q3

2
1.212 · 1011

Q3
+ 0.07519

3 0.1086 ln(0.0001Q)− (4.754 · 10−10) Q2 +
1.348 · 1011

Q3

4 2.339 3
√

0.0001Q− 1.385 ln(0.0001Q)− 9518.0

Q
+

2.075 · 1011

Q3

5 80.7 3
√

0.0001Q− 39.0√
0.0001Q

−41.54 ln(0.0001Q)+

3.911 · 1011

Q3
− (1.571 · 10−13) Q3

6
27.06√

0.0001Q
− 0.000908Q+ 84.94

√
0.0001Q−

91.6 3
√

0.0001Q− 1.159 · 105

Q
+

4.768 · 1011

Q3

Table 2.2: Surrogate models built at increasing complexity for Iteration 7 of the
�ash drum

The AICc is calculated for the one-term model. Afterwards, the best two-term model

is identi�ed. In this case, the best two-term model is chosen from
(

13
2

)
= 156 basis

combinations. This is done using the MILP model (M). From here, the AICc of the

two-term model is compared to the one-term model (see Figure 2.3 for AICc versus

model size for the previous iteration). Since AICc decreases with the addition of a

second term, there is su�cient evidence to increase the model size to two terms and

we test a three-term model for a better �t. This continues until the AICc worsens, as

it does going from a �ve-term to a six-term model. Table 2.2 shows the models found

for each model size.

As is often the case, increasing the number of terms does not result in appending

a single basis function to the previous model. Instead, the activity of many bases are
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Figure 2.3: Error and goodness-of-�t during the model building for Iteration 7

changed as model complexity is allowed to increase. This demonstrates the bene�ts

a�orded by leveraging the synergistic e�ects of basis function combinations, something

that is not possible using standard statistical techniques such as backward elimination

or forward selection.

The mean squared error and AICc for each model size is shown in Figure 2.3. It is

important to note that, even though the model error decreases from �ve to six terms,

the information criterion shows that this increase in accuracy is not worth the added

complexity of a sixth term. Surrogate models at each iteration are built similarly.

Recalling Figure 2.1, we can examine the progress throughout the rest of the

algorithm. As mentioned previously, a number of new simulation points are selected

using an adaptive sampling technique called error maximization. New points are

selected to maximize the current candidate's modeling error. Next, these points are

simulated and compared with the current model to determine the actual model error.

Each iteration is terminated in this example when (a) the error exceeds a tolerance

of 1%, normalized by the range of ρ or (b) the maximum number of points sampled,

N ems
max(N), has been reached. In the case of (a), a new model is rebuilt using previous

and newly-simulated data points. If the maximum number of points sampled for

the iteration has been reached, the current error is estimated by the normalized root
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Figure 2.4: Estimated, maximum found, and test model errors found building ρ̂(Q)

mean square error (RMSE). If this error exceeds the speci�ed tolerance of 0.5%, the

training set is updated and a new iteration begins. Since these error maximization

sampling (EMS) points are likely to be a conservative estimate of the average model

error over the entire domain, if the estimated error tolerance is not violated, then the

model is considered su�ciently accurate. In this case, the basis functions are �xed,

the sparse β vector is updated using a simple least squares estimation with the latest

data set, and the algorithm terminates.

Figure 2.4 shows the estimated and maximum errors for each iteration of the

algorithm. After the completion of the algorithm, we also compared each model to

an independent data set of 200 evenly sampled points. This calculation gave the

test error shown in Figure 2.4. This �gure demonstrates that the estimated error is,

generally, a conservative estimate of the test error. Additionally, as the algorithm

progresses, the EMS sampling is able to intelligently select new sample points to

provide valuable information during the model building step. As more information

about the system is obtained from simulations, the model building step is able to show

more complex models that best represent the data as seen in Figures 2.5 and 2.6, and

Table 2.3. Figures 2.5 and 2.6 show several snapshots during execution of the

algorithm. The models for Iterations 1, 3, 5, and 7 are shown alongside the true
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Iter EMS
points

Terms Model

1 1 1
3867.0

Q

2 1 1
1.299 · 1012

Q3

3 1 2
1.098 · 1012

Q3
+ 0.07649

4 1 2
1.094 · 1012

Q3
+ 0.07398

5 2 3 0.4522 ln(0.0001Q)− (1.418 · 10−5) Q+
1.409 · 1012

Q3

6 1 3 0.4094 ln(0.0001Q)− (1.262 · 10−5) Q+
1.39 · 1012

Q3

7 11 5 58.9 3
√

0.0001Q− 60.94√
0.0001Q

−

45.15 ln(0.0001Q) +
3.524 · 1012

Q3
−

(6.259 · 10−15) Q3

Final NA 5 62.37 3
√

0.0001Q− 64.53√
0.0001Q

−

47.81 ln(0.0001Q) +
3.659 · 1012

Q3
−

(6.576 · 10−15) Q3

Table 2.3: Surrogate model information from modeling the �ash drum.
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simulation curve. The training data set, shown in white, and the newly sampled

EMS points, shown in blue, are depicted as well. During Iterations 1�6, either one or

two EMS points were added per iteration (Table 2.3). Figures 2.5 and 2.6 illustrate

the e�ectiveness of selecting points with high model mismatch. During the seventh

and �nal iteration, eleven EMS points were added. None of these points violated the

1% maximum error tolerance and lead to an estimated normalized error of 0.16%.

The models and model complexity for each iteration, are also shown in Table 2.3.

After the �nal iteration, we have a �ve-term surrogate model of the following form:

ρ̂(Q) = 62.37 3
√

0.0001Q− 64.53√
0.0001Q

− 47.81 ln(0.0001Q)

+3.659·1012

Q3 − (6.576 · 10−15) Q3.

The terms in the model are chosen using a training set of 9 points and the coe�cients

are re-evaluated using the full data set of 20 points.

2.4 Implementation and computational results

ALAMO combines a tailored model generation solver with an error maximization

sampling routine. The front end code is written in Matlab and uses the optimiza-

tion software GAMS/CPLEX for the solution of all model-building optimization

subproblems and the black-box solver SNOBFIT (Stable Noisy Optimization by

Branch and FIT) [47] for adaptive sampling. MINQ [78] is used to solve SNOBFIT's

quadratic programming subproblems. In order to facilitate comparisons with existing

techniques, several more standard model generation alternatives are integrated into

ALAMO including

1. Ordinary least-squares regression (OLR)

OLR solves (2.2) using all of the available basis functions.
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Figure 2.5: Comparison of the true simulated data and the current surrogate models
for Iterations 1 and 3 along with current and EMS data sets.

2. Exhaustive search best subset method (EBS)

EBS exhaustively searches all of the possible best T subsets of a problem. Like

the method proposed, T is parameterized. The best T subset is chosen to

minimize the squared model error.

3. The lasso regularization (LASSO)

LASSO uses the MATLABR2011b implementation of the lasso algorithm and

chooses the regularization parameter based on 10-fold cross-validation.

Latin hypercube sampling has been added to ALAMO as an alternative sampling

method using Matlab's lhsdesign() function. In this section, we look at the model

accuracy, quality of point sampling, and �nal model complexity by comparing these
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Figure 2.6: Comparison of the true simulated data and the current surrogate models
for Iterations 5 and 7 along with current and EMS data sets.

alternatives to our implementation of the best subset method which solves (M) for

increasing T and uses the EMS proposed here for the model-builder and sampling

routines, respectively.

Two test sets are considered. Test set A considers the problem of learning the

functional forms of equations containing only terms that are present in the algorithm's

basis function set. These functions are composed of basis functions that are available

to for surrogate modeling with two and three input variables. Basis functions from

Table 2.1 are used with α = {±3,±2,±1,±0.5} for polynomials, α = {±2,±1,±0.5}

for pairwise polynomials, and exponential and logarithmic functions with α = 1, γ =

1. A total of 27 two-dimensional functions are generated with varying complexity
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Function type Functional form

I z(x) = β xαi exp(xj)

II z(x) = β xαi log(xj)

III z(x) = β xα1 x
ν
2

IV z(x) =
β

γ + xαi

Table 2.4: Functional forms for test set B.

from two to ten randomly chosen terms, where three functions are generated at each

complexity. In addition, 18 three-dimensional functions are generated from two to

seven randomly selected terms.

The 12 equations in test set B are generated using functional forms that are

unavailable to the surrogate modeling method. These functional forms are included

in Table 2.4. Function parameters for test sets A and B are chosen from uniform

distributions where β ∈ [−1, 1], α, ν ∈ [−3, 3], γ ∈ [−5, 5], and i, j ∈ {1, 2}.

Each test function is modeled as a black-box simulation using M, OLR, EBS, and

LASSO with �ve di�erent random seeds. To compare the EMS adaptive sampling

with a single Latin hypercube, a test function is modeled using the full algorithm a

second model is generated subsequently using a single Latin hypercube (SLH) with

the same number of data points. In this way, we are able to calculate the amount

of information per data point extracted by the EMS sampling method compared

to a Latin hypercube design of experiments. The resulting normalized test error is

calculated as follows:

enorm
k =

1

|T |

√∑
i∈T

(zik − ẑk(xi))2

max
i∈T

zik −min
i∈T

zik
(2.8)

where enorm
k is the normalized error for dependent variable zk calculated from an

independent set of 1000 data points i ∈ T . The normalized error, number of basis
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function terms in the �nal model, and number of required function evaluations for

these tests are shown in Figures 2.7 and 2.8, and Tables 2.5 and 2.6.

Figures 2.7 and 2.8 display the performance pro�le of each modeling and sam-

pling combination for test sets A and B, respectively. Each pro�le is constructed by

calculating the percentage of the total test set solved within a normalized test error,

given as the x-axis. For example, the proposed method using M/EMS is able to solve

80% of test set A to within 0.1% error as calculated using Equation 2.8. Across both

test sets, the proposed method, shown in solid red, outperforms all other modeling

and sampling combinations. In fact, the proposed implementation generally provides

increased model accuracy and requires fewer function evaluations. This shows that

the EMS sampling method discovers more useful information per function evalua-

tion than the SLH over each of the modeling methods. In most cases, the M/EMS

approach is able to attain highly accurate surrogate models using fewer terms than

either LASSO or OLR.

Tables 2.5 and 2.6 show the range of �nal model complexities, T surrogate, found by

each combination of modeling and sampling routines. In most cases, this value is given

as a range since each test was repeated with �ve di�erent initial random seeds. In

nearly every case, the method outlined here, M/EMS, is able to generate a model that

is no more complex � and often much simpler � than any of the alternative competing

combinations. In addition to �nding the most accurate models, our proposed method

often requires fewer terms than tested alternatives.

For test set A we perform a more detailed analysis of the number of terms present

in the �nal surrogate model since the true number of terms, T true, is known and can

be compared against T surrogate. The results of this comparison are shown in detail in

Figures 2.9 and 2.10 and summarized by the mean terms deviation, T surrogate− T true,

as well as the standard deviation of this value for each run of test set A. A smaller

deviation signi�es fewer required terms in the �nal surrogate model. The results
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Figure 2.7: Top: Fraction of functions in test set A modeled within a normalized
test error. Bottom: Fraction of functions in test set A modeled within a speci�ed
number of function evaluations. Since the EMS and SLH sampling schemes use the
same number of data points, only the di�erences between models is important here.
Note: EBS is not plotted since the CPU time was too great for several of the more

complex problems.
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Figure 2.8: Top: Fraction of functions in test set B modeled within a normalized
test error. Bottom: Fraction of functions in test set B modeled within a speci�ed

number of function evaluations.

show that, not only, is the proposed modeling method (M) more consistent, but it

also exhibits fewer terms than the other alternatives. However, the sampling method

chosen seems to have little e�ect on the resulting model size for this test set.

The ALAMO process does not guarantee a unique solution. In fact, there are

several cases where di�erent sets of initial points lead to di�erent active basis function

sets. Solution quality, however, does not su�er in these cases. It is often the case

that, over certain ranges of x, di�erent basis functions behave very similarly. For

example, the following two surrogate models ẑ(x) =
√
x + 0.1x + 1 and ẑ(x) =

1.27 log(x) + 0.21x + 1.8 have di�ering sets of basis functions. However, these two
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Figure 2.9: Model complexity comparison for each modeling method using EMS
from test set A
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Figure 2.10: Model complexity comparison for each modeling method using a single
Latin hypercube from test set A
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No.
of in-
puts

No.
of
true
terms

M/
EMS

M/
SLH

EBS/
EMS

EBS/
SLH

LASSO/
EMS

LASSO/
SLH

OLR/
EMS

OLR/
SLH

2 2 2 [2,
2]

2 2 [6, 8] [6,
11]

[12,
15]

[12,
15]

2 3 3 3 3 3 [5,
12]

[5,
10]

[12,
14]

[12,
14]

2 4 [3,
4]

[3,
4]

[3,
4]

[3,
4]

[8,
11]

[8,
10]

[11,
12]

[11,
12]

2 5 [2,
4]

[2,
4]

[2,
5]

[2,
5]

[3,
12]

[4,
11]

[10,
16]

[10,
16]

2 6 [5,
6]

[6,
6]

[5,
6]

[6,
6]

[7,
10]

[6, 7] [11,
13]

[11,
13]

2 7 [4,
6]

[4,
6]

[4,
7]

[4,
7]

[7,
11]

[6,
12]

[8, 13] [8, 13]

2 8 [4,
5]

[5,
6]

[4,
5]

[5,
6]

[6, 8] [6, 9] [10,
15]

[10,
15]

2 9 [4,
6]

[4,
6]

NA∗ NA∗ [6,
14]

[7,
12]

[10,
17]

[10,
17]

2 10 [4,
8]

[4,
8]

NA∗ NA∗ [5,
14]

[7,
14]

[10,
14]

[10,
14]

∗Note: Due to large CPU times EBS tests were not run with greater than 9 true terms

Table 2.5: The average minimum and maximum number of surrogate model terms
for test set A.

models only deviate by 0.076% over x ∈ [2, 10]. Depending on the initial sample set,

either of these models might be chosen to equal e�ect by the proposed method. The

similarity of model performance with di�erent sets of basis function also allows us to

model large, complicated systems with a limited, but �exible set of basis functions.

The results of these experiments show the success of the proposed method in

terms of our three main goals: model accuracy, model simplicity, and modeling ef-

�ciency, with respect to function evaluations. In the next section, we demonstrate

the e�ectiveness of these derived models in the context of an algebraic optimization

study.
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True
func-
tion
type

Function
ID

M/
EMS

M/
SLH

LASSO/
EMS

LASSO/
SLH

OLR/
EMS

OLR/
SLH

I a 5 5 [3, 5] [4, 9] [6, 17] [6, 17]
I b [4, 10] [4, 10] [10,

14]
[5, 8] [8, 17] [8, 17]

I c [3, 10] [6, 9] [8, 9] [4, 10] [13,
17]

[13,
17]

II a [4, 6] [4, 10] [8, 15] [7, 9] [15,
19]

[15,
19]

II b [1, 7] [1, 9] [13,
16]

[11,
17]

[13,
30]

[13,
30]

II c [5, 12] [5, 12] [9, 13] [9, 16] [9, 19] [9, 19]
III a [3, 4] [1, 4] [2, 5] [2, 5] [9, 20] [9, 20]
III b 4 [1, 4] 5 5 [9, 20] [9, 20]
III c [3, 4] [3, 4] [5, 8] [5, 9] [18,

24]
[18,
24]

IV a [7, 8] [4, 10] [8, 17] [11,
18]

[13,
19]

[13,
19]

IV b [8, 9] [9, 10] [8, 12] [10,
14]

[9, 17] [9, 17]

IV c [6, 9] [9, 10] [5, 13] [4, 12] [13,
15]

[13,
15]

Table 2.6: The average minimum and maximum number of surrogate model terms
for test set B. Note: Due to large CPU times EBS tests were not run on test set B.

Table 2.7: Mean and standard deviation values for T surrogate − T true from test set A
for each modeling and sampling method tested

M/
EMS

M/
SLH

LASSO/
EMS

LASSO/
SLH

OLR/
EMS

OLR/
SLH

Mean -0.860 -0.814 4.619 3.879 10.177 10.177
Standard deviation 1.688 1.703 5.005 4.745 8.261 8.261
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2.5 Case Study: Carbon Capture Adsorber

The synthesis of an optimal carbon capture process is of immense importance for

identifying promising technologies and materials to reduce greenhouse gas emissions

from fossil fuel power plants. Because of the complex interaction of material be-

havior and process con�guration, an optimization-based process synthesis provides

a rigorous means to assess the trade-o�s among capital costs, parasitic power con-

sumption, and other operating costs for a given technology and material. However,

to accurately predict the performance of such systems, rigorous equipment models

are necessary. The ALAMO methodology provides a way to use the required rig-

orous models (via algebraic surrogates) within a superstructure-based optimization

framework for process synthesis. Here, we use the ALAMO methodology to create

an algebraic surrogate model from a solid sorbent adsorber simulation, which is one

technology under development for post-combustion carbon capture.

The adsorber under consideration is a bubbling �uidized bed (BFB), which is

modeled as a system of PDEs in Aspen Custom Modeler and is described by Lee and

Miller [68]. Figure 2.11 shows the major features of the model. CO2 rich gas enters

the bottom of the reactor and contacts the solid. CO2 lean solids enter the top of

the bed and leave as a CO2 rich stream from the bottom of the bed in the under�ow

con�guration. Cooling water �ows through internal cooling tubes to remove excess

heat of adsorption from the reactor.

Figure 2.11: Diagram of the solid sorbent carbon capture adsorber
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The goal is to develop an algebraic surrogate model, which accurately captures

the behavior of the BFB adsorber under a range of operating and design conditions so

that the surrogate model can ultimately be used for process synthesis. To demonstrate

the performance of ALAMO on such a rigorous model, we consider two degrees of

freedom that have a signi�cant impact the performance of the adsorber: reactor bed

depth, L, and cooling water �ow rate, F . The accuracy of the model is measured

based on the percentage of CO2 removed, r, from the �ue gas stream:

r =
CO2 in outlet �ow

CO2 in �ue gas
. (2.9)

The CO2 removed increases with diminishing return as both the bed depth and cooling

water �ow rate are increased.

We employ ALAMO to develop a surrogate model for r as a function of L ∈

[2m, 10m] and F ∈
[
16.7 kmol

s
, 1666.7 kmol

s

]
using the model builder M and the EMS

adaptive sampling routine. Since we expect many of the solutions comprising the

pareto analysis to be at variable bounds, we select an initial sample set at the corner

points of the design space to ensure that we do not extrapolate beyond the sampled

region.

The estimated and maximum normalized error calculated at each iteration is

shown in Figure 2.12. A separate test set of 394 data points is collected to test

the model at each iteration. The estimated normalized test error using this data is

also shown. As with the illustrative example, we see an increase in the estimated and

maximum error found during EMS from Iteration 1 to 2. This is an e�ect of sampling

improvement and not evidence of model inaccuracy. The test error remains constant

between these two models. The e�ectiveness of using EMS points to generate a con-

servative estimate of model error for use as a stopping criterion can be seen here as

well.
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Figure 2.12: Normalized error progression through the entire algorithm

Figures 2.13 and 2.14 show the model improvement and EMS sampling for Itera-

tions 1, 3, 5, and 7. For example, during Iteration 1 the model (on the y-axis) was

built based on the four simulated data points (on the x-axis). The adaptive sam-

pling routine returned two areas of high model mismatch shown in blue. After the

�nal EMS Iteration, 7, the newly sampled points no longer violate the model beyond

the estimated normalized error tolerance of 0.5% and maximum error tolerance of

1%. The resulting models, model size, and number of EMS points generated for each

iteration are shown in Table 2.8.

Figure 2.15 shows the solution path as the complexity of the model is al-

lowed to increase from one to thirteen basis functions. The complete basis

set has 67 terms available to build each model. The decrease in error seen in

Figure 2.15 from twelve to thirteen terms does not justify the use of a thir-

teen term model. The �nal model chosen is the following twelve-term model:

r̂(L, F ) = 0.201 log(0.2L) + (6.55 · 10−10) F 2 L− (6.96·10−6)F√
L

− 0.609L√
F

− (4.27 · 10−4)
√
F L+ (4.36 · 10−4)

√
F + (4.09 · 10−4) L2

+0.387
3√L

+ 0.147 3
√
L+ 0.145L2

F
+ 3.00·103

F 2 L2 − 3.23·106

F 4 L4

Once the model has been generated it can be used to analyze the trade-o�s among

bed depth and cooling water �owrate and percentage of CO2 removed from the enter-

ing gas. Figure 2.16 presents the results of the pareto analysis showing the trade-o�s
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Table 2.8: Surrogate models built at each iteration for the BFB adsorber

Iter EMS
points

Terms Model

1 2 2 (4.88 · 10−5) F
√
L+ 0.138

2 2 4 (2.14 · 10−4) F
√
L− (2.58 · 10−8) F 2 L+

1.00·104

F 4 − (7.45·10−8)F 2

L

3 2 3 0.0556 3
√
F − (2.64 · 10−4) F

√
L+

(6.78 · 10−5) F L

4 2 6 0.0458 3
√
F − (3.51 · 10−10) F exp(L)−

(3.13·10−4)F√
L

− 0.0687
L

+ 0.0707
3√L

+
(1.28·10−13)F 4

L4

5 2 5 0.0709 3
√
F − (9.60 · 10−3)

√
F −

(1.06·10−3)F
L2 − (2.01·10−7)F 2

L
+

(7.67·10−7)F 2

L2

6 9 8 0.365
L3 − 0.314

L2 − 0.492L√
F

+ 0.257 3
√
L+ 0.120L2

F
+

2.21·103

F 2 L2 − 2.38·106

F 4 L4 − (2.75 · 10−6) F L

7 12 12 0.200 log(0.2L) + (6.52 · 10−10) F 2 L−
(6.12·10−6)F√

L
− 0.609L√

F
− (4.25 · 10−4)

√
F L+

(3.98 · 10−4)
√
F + (4.04 · 10−4) L2 + 0.385

3√L
+

0.148 3
√
L+ 0.145L2

F
+ 3.00·103

F 2 L2 − 3.23·106

F 4 L4

Final NA 12 0.201 log(0.2L) + (6.55 · 10−10) F 2 L−
(6.96·10−6)F√

L
− 0.609L√

F
− (4.27 · 10−4)

√
F L+

(4.36 · 10−4)
√
F + (4.09 · 10−4) L2 + 0.387

3√L
+

0.147 3
√
L+ 0.145L2

F
+ 3.00·103

F 2 L2 − 3.23·106

F 4 L4
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Figure 2.13: Modeled current and EMS data for Iterations 1 and 3 of the proposed
methodology compared with true simulated data

between cost and environmental impacts. This curve was generated by solving an

algebraic optimization model using the surrogate model of r and the algebraic model

of COE with a weighted objected function of cost and environmental impact. For

more details on the form of the increased cost of electricity to the consumer COE, see

the National Energy Technology Laboratory power systems �nancial model [1]. The

red line shows the pareto curve generated by solving a nonconvex nonlinear weighted

objective function problem using BARON. For every given point on that line, there

is no bed length or cooling water �ow that could increase r.

While we have accurately modeled the actual CO2 removal, we have not modeled

the �rst derivatives. Initially, we must assume that the surrogate accurately models
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Figure 2.14: Modeled current and EMS data for Iterations 5 and 7 of the proposed
methodology compared with true simulated data

the �rst derivatives of the rigorous simulation. After an optimum is located, this can

be veri�ed in several ways. Fully linear models [22] have bounded model error and

derivative error in the neighborhood of a solution. Finite di�erence techniques can

be used to approximate the �rst derivatives near the solution. Using simulator eval-

uations, we can apply either technique to prove that our solution is a local optimum.

Alternatively, we have seen promise in using the proposed methods to de�ne �ow-

sheets and search complicated topologies to �x integer decision variables and discover

favorable starting points for continuous variable derivative-free optimization [76]. To

verify the points on the pareto curve in Figure 2.16, 394 evenly sampled test points

are evaluated and are plotted on the same axis. Each of these points represents a
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Figure 2.15: Error and goodness-of-�t during the model building for Iteration 7

Figure 2.16: Pareto analysis of the BFB adsorber

feasible point, though most represent suboptimal process conditions since either a

reduction of costs or an increase in removed CO2 is possible. The algebraic model

derived by ALAMO can now be used, not only, for optimization, but also for uncer-

tainty quanti�cation via thousands of surrogate simulations that consume a fraction

of the CPU time required by a single evaluation of the original simulation.

2.6 Conclusions

Simulation-based optimization provides a rich avenue for evaluating design parameters

according to cost functions. As the number of decision variables increases, current
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derivative-free methods become less e�ective. We have presented a novel algorithm

for use in simulation-based optimization. Surrogate models of component blocks

comprising a more computationally complex simulation are tailored for accuracy,

ease of optimization, and simulation cost reduction. These models are built using a

reformulation of the generalized best subset method to avoid the costly combinatorics

of full enumeration, while maintaining the high accuracy of this method. At the same

time, statistical techniques are used to avoid over�tting and to ensure the generation

of simple, compact models that promote their eventual use as surrogates in algebraic

optimization. A new active sampling method, EMS, has been shown to improve the

quality of sampled points. The e�cacy of these methods is demonstrated over several

competing modeling methods.

We can conclude that, if a simulation is required to characterize and optimize a

system or process, surrogate models can be accurately and e�ciently abstracted for

the purpose of algebraic optimization with �exible objectives and constraints using

the method outlined in this chapter. The proposed methodology is equally applicable

for �tting experimental data.
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Chapter 3

Constraining regression problems in

the predictor and response variable

domains

We address an a central theme of empirical model building: the incorpora-

tion of information in the model building problem. By enabling modelers

to leverage all available information, regression models can be constructed

using both empirical data but as well as theory-driven knowledge of re-

sponse variable bounds, thermodynamic limitations, and boundary condi-

tions, among others.

We expand the inclusion of regression constraints beyond intraparam-

eter relationships to relationships between combinations of predictors and

response variables. Since the functional form of these constraints is more

intuitive, they can be used to reveal hidden relationships between regres-

sion parameters that are otherwise unknown to the modeler. We present

a semi-in�nite programming approach to the incorporation of these novel

constraints then o�er several application areas and computational results.
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3.1 Introduction

Often, modelers are faced with the decision of (a) utilizing �rst principles models,

intuition, etc. or (b) building a surrogate model using empirical data. In the case

of an incomplete �rst principles analysis, modelers are forced to forgo theoretical

derivations and construct regression models based on experimental data. We aim to

augment empirical regression with �rst principles information, intuition, and other

a priori system characterization techniques to build accurate, physically-realizable

models. By doing this, we leverage the synergistic e�ects of empirical data, �rst-

principles derivation, and intuition. Observed data points are often sampled at a

premium, incurring costs associated with computational time, raw materials, and/or

other resources. Frequently, additional insights provided by system knowledge, intu-

ition, or the application of �rst principles analysis are available without additional

computational, �nancial, or other types of costly resources requirements. Knowledge

of a less exact nature, including limits on the response variables; known relationships

between response and predictor variables; and relationships among responses, can be

applied in conjunction with experimental data. For example, ensuring the nonnega-

tivity of a modeled geometric length, enforcing a sum-to-one constraint on modeled

chemical compositions, and ensuring that derivative bounds obey thermodynamic

principles are all practical applications of bene�cial nonempirical insights.

We aim to build regression models (U):

(U) min
β∈A

g(β;x1, x2, . . . , xN , z1, z2, . . . , zN)

that determine m regression parameters or coe�cients β that minimize a given loss

function g (e.g., squared error, regularized error, information criterion, etc.) over a

set of original regression constraints A based on data points (xi, zi), i = 1 . . . N . For

conciseness, we will refer to the g(β;x1, x2, . . . , xN , z1, z2, . . . , zN) data points as g(β).
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To formally de�ne this insightful nonempirical information, we would like to en-

force the following constraint on a regression problem:

Ω(X ) := {β ∈ Rm : f [x, ẑ(x; β)] ≤ 0, x ∈ X} (3.1)

where function f is a constraint in the space of the predictor(s) x and modeled

response(s) ẑ, and X is a nonempty subset of Rn. Equation 3.1 can be used to

reduce the feasible region Ω for any general regression analysis formulation: linear

least squares, nonlinear least squares, regularized regression, best subset methods,

and other characterization techniques.

By using system knowledge beyond sampled data, we will re�ne the feasible do-

main as the intersection of A and Ω and solve problem (C):

(C) min
β∈A∩Ω(X )

g(β)

where Ω is de�ned over the domain x ∈ X while the original regression problem (U)

exists in the space β ∈ A.

Rao [83] and Bard [10] were the �rst to use a priori parameter relationships in

the form of simple equality constraints. Recently, the use of such relationships has

expanded to include inequality constraints in the space of the regression parameters,

a case that arises more naturally in practice [55]. Inequality relationships between

regression parameters have been applied to both linear and nonlinear least squares

problems in the �elds of statistics [51, 69], economics [86, 97], and engineering [37].

Most notably, Korkhin has investigated the properties of simple parameter restric-

tions [56, 59, 60], nonlinear parameter restrictions [57, 58], and, more recently, the

formulation of inequality constraints with deterministic and stochastic right-hand-

sides [61].
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Previous work employs a priori knowledge to reveal relationships between subsets

of regression parameters that serve to restrict their range. To our knowledge, there

has been no investigation into the enforcement of a priori information relating the

predictors and regressors. We aim to use these relationships between predictors and

regressors to restrict the feasible region of the original problem space.

Since previous applications of constrained regression have been restricted to the

parameter space β of the regression problem, these techniques are inherently speci�c

to the functional form of the response. For example, consider a quadratic response

model, ẑ(x) = β0 + β1 x + β2 x
2, and the a priori insight β1 ≥ β2. If an exponential

function, ẑ(x) = β0 + β1 exp(x), produces a more favorable �t, there is no standard

way to translate constraints from the quadratic to the exponential model. Enforcing

a lower bound on the response, ẑ(x) ≥ 0 ∀x, instead of the β-space produces a

constraint that is independent of the model's functional form. Additionally, system

insight in the x-domain may be more intuitive and readily available than knowledge

of a single contrived regression model's functional form.

A complication arises from the realization that Equation 3.1 is valid for the full

problem space and, therefore, needs to be enforced for every point x ∈ X . As a

result, the feasible region is semi-in�nite. Semi-in�nite programming (SIP) problems

are optimization models that have �nitely many variables and in�nitely many con-

straints [85]. These problem formulations are common in the �elds of approximation

theory, optimal control, and eigenvalue computations, among others. In each case,

one or more semi-in�nite constraints result in one constraint for each value of an

optimization parameter (in this case x) that varies within a given domain [44, 85].

The �rst signi�cant work on SIP, due John [48], provides the necessary and suf-

�cient conditions for the solution to a semi-in�nite program. Initially, SIP research

focused on linear and convex nonlinear semi-in�nite programming [39, 44, 85]. More

recently, advances in global optimization, including BARON [96], have made the solu-
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tion of general nonconvex SIP problems more practical. In problem (C), the objective

is often convex, as is the case for linear least squares regression. The feasible region,

however, is generally nonlinear nonconvex as we will show in Section 3.4. The key

to solving a SIP problem, independent of the solution method, is the optimization of

max
x∈X

f [x, ẑ(x; β)] to locate the maximum violation. This subproblem is signi�cant

because β ∈ Ω(X ) if and only if max
x∈X

f [x, ẑ(x; β)] ≤ 0 [84].

To assess the bene�ts a�orded by augmenting standard regression problems (U)

with a priori information as in (C), we utilize the test platform ALAMO [24]. ALAMO is

a software package designed to generate models that are as accurate and as simple as

possible. This combination of accuracy and simplicity is well-suited for regression.

The remainder of the paper is organized as follows. In Section 3.2, we outline the

modeling and sampling methods of the ALAMO test platform. We propose a method-

ology to solve a semi-in�nite problem in its most general form in Section 3.3. In

Section 3.4, we list applications of problem domain constrained regression using our

solution strategy: restricting individual and multiple responses, constraining response

model derivatives, and expanding or contracting the enforcement domain. Next, we

o�er computational studies to demonstrate the e�ectiveness of the proposed methods

in Section 3.5. Finally, we o�er conclusions and comments in Section 3.6.

3.2 ALAMO

ALAMO is a learning software that identi�es simple, accurate surrogate models using

a minimal set of sample points from black-box emulators such as experiments, sim-

ulations, and legacy code. ALAMO initially builds a low-complexity surrogate model

using a best subset technique that leverages a mixed-integer programming formulation

to consider a large number of potential functional forms. The model is subsequently

tested, exploited, and improved through the use of derivative-free optimization solvers
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that adaptively sample new simulation or experimental points. For more information

about ALAMO, see [24].

In this section, we detail relevant ALAMO model-building methods as applied to

parametric regression. The functional form of a regression model is assumed to be

unknown to ALAMO. Instead, ALAMO poses a simple set of basis functions, say x, x2,

1/x, log(x), and a constant term. Once a set of potential basis functions is de�ned,

ALAMO attempts to construct the lowest complexity function that accurately models

sample data. To do this, the following MIQP (Mixed-Integer Quadric Program) is

solved for increasing model complexity, T .

(A) min g(β) =
N∑
i=1

(
zi −

N∑
i=1

βj Xj(xi)

)2

s.t.
∑
j∈B

yj = T

βlo
j yj ≤ βj ≤ βup

j yj j ∈ B

βj ∈ [βlo
j , β

up
j ] j ∈ B

yj ∈ {0, 1} j ∈ B.

In problem (P), the simple basis functions, Xj(x), j ∈ B, are active when the corre-

sponding binary variable yj = 1 and inactive when yj = 0. Here, set A represents the

feasible region of problem (A) as a function of regression coe�cients β and activity

indicators y. The size of the model, speci�ed by the parameter T in �rst constraint,

is increased until a goodness-of-�t measure, such as the corrected Akaike Information

Criterion [46], worsens with an increase in model size.
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Using the list of basis functions given above, the optimization problem is as follows.

(M) min g(β) =
N∑
i=1

(
zi −

[
β0 + β1 x+ β2 x

2 + β3
1

x
+ β4 log(x)

])2

s.t. y0 + y1 + y2 + y3 + y4 = T

βloy0 ≤ β0 ≤ βupy0

βloy1 ≤ β1 ≤ βupy1

βloy2 ≤ β2 ≤ βupy2

βloy3 ≤ β3 ≤ βupy3

βloy4 ≤ β4 ≤ βupy4

y0, y1, y2, y3, y4 ∈ {0, 1}

βlo
j ≤ β0, β1, β2, β3, β4 ≤ βup

j

While a typical basis set is often far larger, this simple example illustrates the form

of the objective g(β) and original constraint set β ∈ A before intersection with new

a priori constraints Ω(X ).

Once a model has been identi�ed, it is improved systematically through the use of

an adaptive sampling technique that adds new simulation or experimental points to

the training set. New sample points are selected to maximize model inconsistency in

the original design space, x ∈ X , as de�ned by box constraints on x, using derivative-

free optimization methods [87].

3.3 Proposed methodology

In this section, we outline a numerical solution method for semi-in�nite programming

problem (C) and demonstrate key algorithmic insights using an illustrative example.

Problem (C) is solved using the standard, two-phase SIP method. For details on this

approach see [84]. In Phase I, we solve a relaxation of (C), where the semi-in�nite
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constraint is only enforced over a �nite subset x ∈ X l ⊂ X :

(PI) min
β∈A∩Ω(X l)

g(β)

By solving (PI), we �nd an approximation of the regression parameters βl over the

relaxed feasible region de�ned below.

Ω(X l) :=
{
β ∈ Rm : f [x, ẑ(x; β)] ≤ 0, x ∈ X l

}
(3.2)

Phase II involves solving the maximum violation problem as given in (PII):

(PII) max
x∈X

f
(
x, ẑ(x; βl)

)
Typically, after (PI) is solved, its solution values βl are used to solve (PII). If the

solution to (PII) satis�es f(xl) ≤ 0, the method terminates; otherwise, an updated

feasible set X l = X l ∪ xl is used to repeat Phase I. In general, (PI) will preserve the

convexity of the original regression problem (U), though several speci�c exceptions

to this observation are listed in Section 3.4. For most linear regression problems, the

feasible region Ω(X l) is linear. (PII), however, is generaly nonconvex and necessitates

the use of a global optimization solver.

�Zakovi¢ and Rustem [110] solve (PII) to �nd (a) the maximum violation and (b)

any feasible violation. In both cases, they employ a global search strategy using

a multistart local optimization approach. For (b), the complete solution of (PII)

is required before feasibility to the original problem (C) can be proven. In their

�ndings, (a) requires fewer iterations, while (b) results in a signi�cant reduction of

computational e�ort. The authors indicate that (b) is the superior solution method.

We propose a method that is similar to (b), but we employ an optimization solver

that can rigorously guarantee global optimality. Additionally, we seek to locate several
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isolated feasible solutions to (PII) during Phase II with the aim of reducing the total

number of constrained regression iterations.

We begin the algorithm with either an empty feasible set X 0 = ∅ or some

nonempty set of feasible points, for example those selected by a design of experi-

ments (e.g., random sampling, Latin-hypercube sampling [74], factorial design [92],

etc.). Next, we solve (PI) to �nd an initial approximation for β0. Using the built-in

functionality of the global optimizer BARON, we solve (PIIfeas) with β
0 to locate up to

nviol isolated feasible points

(PIIfeas) max
x∈X

f
(
x, ẑ(x; βl)

)
s.t. f

(
x, ẑ(x; βl)

)
− εviol ≥ 0

Often, feasible solutions in continuous optimization problems are located close enough

to each other as to be nearly identical. We ensure that the feasible points are not

redundant by selecting isolated feasible solutions such that ‖x0
i−x0

i′‖∞ ≥ εisol for every

pair of points i and i′ [88]. By solving (PIIfeas) using an objective function that re�ects

the magnitude of violation, we enable BARON to locate a set of feasible points with

comparatively large, ranked violations. We also exclude points f
(
x, ẑ(x; βl)

)
= 0

that are feasible to the original problem (C) by using a small number εviol to ensure

a strict violation.

After updating X l+1 = X l∪xl, (PI) is solved again with an updated feasible region

Ω(X l+1). We proceed until it can be shown that the current iteration's parameters, βl,

are both optimal and feasible for (C). This is true if and only if βl is the solution to (PI)

and max
x∈X

f
(
x, ẑ(x; βl)

)
≤ 0. An outline of the proposed semi-in�nite constrained

regression algorithm is included in Algorithm 3.
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Algorithm 3 Solve Semi-In�nite Constrained Regression Problem

Given a training set of dependent and independent data points [xid, zik] for i =
1, . . . , N, d = 1, . . . , n, k = 1, . . . ,m; requested feasible points nviol; and relevant
tolerance values

Initialize l = 0 and X 0 as ∅ or by using a design of experiments
while (f(xl) > ε) or (l < 1) do

βl ← solve (PI)
xl, f(xl)← �nd nviol isolated feasible points for (PIIfeas)
if xl == ∅ then

βl is both feasible and optimal to (C)
break

else

Update feasible set, X l+1 ← X l ∪ xl
end if

l← l + 1
end while

3.3.1 Illustrative example

To detail the steps involved in the proposed technique, we construct a model for

z = x5 using a �xed functional form ẑ(x) = β1 x + β2 x
3 over 0 ≤ x ≤ 1. The true

function is nonnegative over this region; therefore, we pose the following constrained

regression problem:

min
β1,β2

4∑
i=1

(
zi −

[
β1 x+ β2 x

3
])2

s.t. β1 x+ β2 x
3 ≥ 0 x ∈ [0, 1]

where model parameters βl1 and βl2 are selected to minimize model error over four

data points while ensuring nonnegativity in the response model. An ordinary least

squares regression objective for a regression model with a �xed functional form is
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used to illustrate this example more concisely. The discretized Phase I problem:

min
β1,β2

4∑
i=1

(
zi −

[
β1 x+ β2 x

3
])2

s.t. β1 x+ β2 x
3 ≥ 0 x ∈ X l

is formulated by enforcing the semi-in�nite constraint for discrete values of x in the

feasible set X l for constrained regression iteration l. We use following Phase II prob-

lem:

min βl1 x+ βl2 x
3

s.t. βl1 x+ βl2 x
3 ≤ 0− ε

0 ≤ x ≤ 1

to maximize the nonnegativity violation, where feasible solutions to this problem xl

are added to the feasible set before the Phase I problem is resolved. If the maximum

violation problem is infeasible for iteration l, the model parameters βl1 and βl2 are

feasible and optimal to the semi-in�nite problem.

Table 3.1 shows the regression models from each Phase I solution. Since the

initial feasible set X l is empty, the Phase I model for l = 1 matches the ordinary least

squares or unconstrained regression model. The training and test errors are included

in Table 3.1. Here, the training error is calculated using the four training points and

the test error is calculated using 1000 evenly-distributed sample points. For all results,

unless stated otherwise, all errors are calculated using the root mean squared error

between a given data set and a model. During each iteration, the newly imposed

constraints worsen the objective or training error by restricting the feasible space.

Despite this degradation of the objective function, the added constraints result in
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improved test error during each iteration. This is because the squared error objective

is an approximation of the true objective or true error.

Table 3.1: Surrogate models and errors for the illustrative example

Surrogate models Training error, Test error,
10−3 10−3

Constrained regression:

Phase I (l = 1): ẑ(x) = −0.308x+ 1.30x3 19.1 0.172
Phase I (l = 2): ẑ(x) = −0.588x+ 1.02x3 34.4 0.0303
Final: ẑ(x) = 0.000x+ 0.954x3 40.2 0.00353

Ordinary least squares regression:

Final: ẑ(x) = −0.308x+ 1.30x3 19.1 0.172

Here, we introduce an error comparison metric representing the error factor cal-

culated for method m using the following equation:

EFm =
RMSEm

RMSEbest

(3.3)

where RMSEm is the root mean squared error for the method of interest and RMSEbest

is the error of the best solution for a given modeling problem. Therefore, the best

modeling method has an EF= 1 while larger values quantify the diminishing success

exhibited by other methods. The training error factors for the unconstrained and the

constrained problem of the above example are 1 and 2.11, respectively. This shows

that the unconstrained problem is more accurate on the training data set. In contrast,

the test error factors for the unconstrained and constrained problems are 48.9 and 1,

which shows that the constrained model is far more e�ective at predicting the values

of future samples.

For each Phase II iteration, we add two points to the feasible set. These points

are listed in Table 3.2. By adding multiple feasible points per round, we avoid un-

necessary Phase I solutions during trial model generation. This is signi�cant because

the solution of Phase I is often resource intensive.
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Table 3.2: Feasible set for illustrative example

Constrained regression Point added to Modeled value,
iteration, l feasible set, xl ẑ(xl)

1 0.240 -0.0560
0.281 -0.0578∗

2 0.120 -0.0053
0.138 -0.0054∗

3 Bounds guranteed

* Optimal solution

To illustrate the form of the Phase I and Phase II problems, an instance of each

problem corresponding to iteration 2 is included below.

Phase I (l = 2):

min
β1,β2

4∑
i=1

(
zi −

[
β1 x+ β2 x

3
])2

s.t. 0.240 β1 + 0.0138 β2 ≥ 0

0.281 β1 + 0.0223 β2 ≥ 0

Phase II (l = 2):

min − 0.588x+ 1.02x3

s.t. − 0.588x+ 1.02x3 ≤ 0− ε

0 ≤ x ≤ 1

Increasing the size of the feasible set allows βl1 and β
l
2 to move closer to the feasi-

ble space de�ned by β1 x+ β2 x
3 ≥ 0. This feasible region as well as the constrained

parameter solutions are depicted in Figure 3.1 to illustrate discretized solution im-

provement with respect to feasibility of the semi-in�nite problem. The true function,

ordinary least squares regression model, and constrained regression model are plotted

with the training data and feasible set in Figure 3.2.
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β1

β2

Feasible region
β1 x+ β2 x

3 ≥ 0

Figure 3.1: Constrained regression feasible region in β-space

x

Response
variable,
ẑ, z

Figure 3.2: Model results and true function for z = x5

By constraining the regression model in the space of the predictor and response

variables using freely available a priori information, we are able to infer constraining

relationships in the β-space that generate physically realizable models that better

predict the response surface.

3.4 Classes of constrained regression in the x- and

z-domain

In this section, we describe several classes of problems with structures that ben-

e�t naturally from constraining the original problem space. Initially, we consider
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constraining individual responses�a direct application of the methods discussed in

the previous section. Next, we extend the proposed methods to the enforcement of

relationships among several response variables. Finally, we discuss two specialized

applications: restricting response derivatives and an expansion and contraction of

the enforcement domain.

3.4.1 Restricting individual responses

Constraints placed independently on individual response variables result in the semi-

in�nite feasible region:

Ω(X ) := {β ∈ Rm : a ẑ(x; β) + h(x) ≤ 0, x ∈ X} (3.4)

where h is a function of the predictors x and the coe�cient a ∈ R e�ectively scales

the response model. We classify constraints of this form by the order of h(x). Zero-

order constraints can be used to enforce upper and lower limits on ẑ; while higher-

order constraints can be used to enforce complex restrictions on the feasible region

of each response model. As in Equation 3.4, the discretized Phase I constraints for

this problem are linear in β for linear regression. In this section, we restrict our

investigation to constraints that are linear in ẑ.

Zero-order restrictions

We begin by discussing an implementation of the proposed methodology on a restric-

tion of the response model via upper and lower bounds. The most common use of

this type of bounding is the enforcement of nonnegativity. Examples of nonnegative

response variables include �ow rates, absolute pressures, and geometric dimensions,

among others. In addition, many other response variables have natural lower and/or
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upper bounds; compositions and probability distributions range from 0 to 1, logistic

functions have asymptotic limits, etc..

To enforce these limits, we impose ẑ(x; β)−zup ≤ 0 for the upper bound, zup, and

zlo − ẑ(x; β) ≤ 0 for the lower bound, zlo. Computational results for combinations

of upper and lower bounds are included in Section 3.5. The application of intuitive

bounds on response variables results in the following Phase I and Phase II problem

formulations for both lower and upper bounds.

(
PIbnd

)
min
β∈A

g(β)

s.t. ẑ(x; β) ≤ zup x ∈ X l

ẑ(x; β) ≥ zlo x ∈ X l

(
PIIlobndfeas

)
min
x

ẑ(x; βl)

s.t. ẑ(x; βl) ≤ zlo − εviol

x ∈
[
xlo, xup

]
(
PIIupbndfeas

)
max
x

ẑ(x; βl)

s.t. ẑ(x; βl) ≥ zup + εviol

x ∈
[
xlo, xup

]
where X =

[
xlo, xup

]
de�nes the problem space of the original predictors for any given

upper and lower bounds on x.

Modeling chemical reactions using statistical or polynomial �tting functions often

results in composition pro�les that are not physically realizable. In the next example,

we examine a batch reactor and two �rst-order reactions in series:

A
ka−→ B

kb−→ C
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where we model the concentration of B, [B], as a function of batch time t ∈ [0.6, 10]

with kinetic constants (ka, kb) = (0.473, 1.44). The reactor has an initial concentration

of [A]0 = 1, [B]0 = 0, and [C]0 = 0. Since we know a priori that the concentration of

B must be nonnegative and less than the initial concentration of A, we impose these

bounds to improve the regression model.

For model generation, we use a training set of ten data points from a Latin hyper-

cube design of experiments and a test set of 1000 randomly sampled points. We allow

for potential terms including exponentials, logarithms, and several powers: ±0.5, ±1,

±2, ±3, ±4. In Section 3.5, we include full computational results for several randomly

generated reaction problems. This example is drawn from this test set.

Here, models are generated both with and without restriction. The models and

test errors found for both cases are compared in Table 3.3. Both methods result in

�ve-term models. However, the unconstrained method had a test error 7.25 times

higher than that of the constrained regression. In fact, every constrained regression

model from one to �ve terms exhibits a test error less than the �nal unconstrained

model.

Up to �ve points are added to the feasible set during a constrained regression

iteration. Table 3.4 includes these points and corresponding modeled values for each

point in the feasible set. For all problems discussed, we have started with an empty

feasible set which, for this problem, is only expanded during the solution of the two-

term model. The new feasible set is then enforced on the following terms' Phase I

problem.

The addition of upper and lower limits on the response output signi�cantly en-

hances model quality without the requirement of additional sampling. The �nal

models for both cases plotted against a curve representing the true concentration of

B in Figure 3.3.
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Table 3.3: Successive models for ˆ[B](t)

Terms Test error Model, ˆ[B](t)

Unconstrained models:

1 0.0418 0.261/t
2 0.248 1.38/t2 − 1.38/t3

3 0.124 −0.255/
√
t+ 0.818/t− 0.470/t3

4 0.793 −0.298/t+ 4.02/t2 − 7.91/t4 + 4.67/t4

5: �nal 0.0856 0.339 log t+ 2.31/
√
t− 0.911/t2 + 0.318/t4 − 1.494

Constrained models:

1 0.0418 0.261/t
*2 � 1.38/t2 − 1.38/t3

*2 � −0.102 log t+ 0.219

2 0.0245 −0.0325 log t+ 0.236/
√
t

3 0.0101 −0.0609 t+ 0.363 t2 + 0.263

4 0.0171 −1.13 log t− 0.805/t+ 1.04
√
t− 0.0604 t

5: �nal 0.0118 −0.175 log t+ 0.885/
√
t− 0.711/t+ 0.00395 t2 − 0.000197 t3

*Unsuccessful trial model

Table 3.4: Feasible set for constraining the regression model for [B]

Point added to feasible set, tl Modeled value, ˆ[B](tl)

Iteration l=1: 0.6076 -2.3759
0.6022 -2.4750
0.6014 -2.4889
0.6006 -2.5039
0.6000 -2.5155

Iteration l=2: 9.9468 -0.0144
9.9596 -0.0145
9.9712 -0.0146
9.9889 -0.0148
10.0000 -0.0149

Points added during the solution of the two-term model
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[B]

t

Figure 3.3: Model results for the concentration of B

Nonzero-order restrictions

If nonconstant restrictions on the response variable are known, they can be applied

in a similar manner. These constraints rely more heavily upon the modeler's system

knowledge than simple bounds, but can lead to increased modeling accuracy and

robustness. Linear and nonlinear constraints of this form may come from initial and

boundary conditions, mass and energy balances, and problem limits.

Often, knowledge exists for a system that is simpler than the system of interest.

Often, that simple system represents a limit or worst-case scenario. In these cases,

the simple system can be used to bound the model. For example, for a heat transfer

system we can bound heat duty using information from a Carnot engine. If a simple

model is available for a reactive system with no byproducts, that model can be used

as a lower bound for certain concentrations. As long as the simple system represents

a limit and not an approximation, it can be used to bound the output.

3.4.2 Restricting multiple responses

Additional relationships between response variables, zk, k = 1, 2, . . . , nresp, may also

be available to a modeler. One example of such a relationship is a mass or energy

balance involving inlet and outlet �ows where two or more �ows are response models.

Another example is the modeling of discretized state variables, such as a �uid velocity
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pro�le in a tube, that results in an intrinsic order of modeled variable values of the

form: ẑk′ ≤ ẑk>k′ . The feasible region for a simultaneous restriction of multiple

response variables can be described as

Ω(X ) := {β ∈ Rm : d(ẑ(x; β)) + h(x) ≤ 0, x ∈ X} , (3.5)

where d provides a function for the relationship among all responses k = 1, 2, . . . , nresp.

In the general case, the solution of this problem requires the simultaneous solution

of all response models. As a result, this formulation is not compatible with ALAMO,

which relies on e�ciencies gained by independent treatment of model output variables.

In the following subsections, we demonstrate a solution method for the general case

and describe an adaptation of this method for the ALAMO framework.

General case

As mentioned above, a solution for the general case involves the regression of all

response models simultaneously using (PImult):

(PImult) min
β∈A∩Ω(X l)

gmult(βk)

where gmult is the objective of the simultaneous regression problem. The algorithm is

shown in Figure 3.4.

The �tting objective for the weighted linear least squares regression, using weight-

ing factors wK , results in the following formulation and �ts each output variable

simultaneously:

gmult(βk) =

nresp∑
k=1

wk

N∑
i=1

(
zki −

∑
j∈B

βkj Xij

)2

(3.6)
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Start

Initialize variables:
l = 0, X 0 = ∅

Phase I: Solve (PImult)
using X l to �nd
βl
k for all outputs

Phase II: Solve
(PIIfeas) using β

l
k to

�nd for violations xl

xl
?
= ∅

yes

End

Update feasible set:
X l+1 = X l ∪ xl, l = l + 1

no

Figure 3.4: Restricting multiple responses for the general case

Adaptation for ALAMO

The ALAMO package does not require �xed functional forms for response variables. As

a result, we can use ALAMO to enforce Equation 3.5 with a more �exible functional

form. Using the ALAMO framework, we solve for each response zk′ independently, using

the previous iteration's, l − 1, surrogate models for zk 6=k′ . The resulting Phase I and

Phase II problems are included below:

(
PImult

k′

)
min

βk′∈Ak′
g(βk′)

s.t. d
(
ẑk′(x; βk′), ẑk 6=k′(x; βl−1

k )
)

+ h(x) ≤ 0 x ∈ X l

(
PIImult

feas

)
max
x

d
(
ẑk(x; βlk)

)
+ h(x)

s.t. x ∈
[
xlo, xup

]
where the form of gk and Ak are given by (A) for response variables k = 1, 2, . . . , nresp.

In this case, Phase I requires the solution of
(
PImult

k′

)
for each k. After the regression of
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Start

Initialize variables:
l = 0, k = 1, X 0 = ∅

Phase Ia: Solve(
PImult

k

)
using (X l,

βl−1
k′ ∀k′ 6= k) to �nd βl

k

k
?
≥ nresp

yes

k = k + 1

Phase Ib: Solve (PImult)
with a �xed surro-
gate form from Ia to
ensure βl

k ∈ Ω(X l)

Phase I

Phase II: Solve
(PIIfeas) using β

l
k to

�nd for violations xl

xl
?
= ∅

yes

End

Update feasible set:
X l+1 = X l ∪ xl, l = l + 1

no

no

Figure 3.5: Extending restricting multiple responses to ALAMO

each individual response variable, it is possible that βlk /∈ Ω(X l) for k = 1, 2, . . . , nresp

since
(
PImult

k′

)
is solved using previous models for responses k 6= k′. To ensure the

feasibility of the resulting model combination after solving
(
PImult

k′

)
for each k, we �x

the functional form of each response and solve
(
PIImult

feas

)
using linear least squares re-

gression, as for the general case, using the objective from Equation 3.6. This approach

is outlined in Figure 3.5. Using this solution approach, we ensure that βlk ∈ Ω(X l) at

the end of Phase I and supply the resulting feasible solution to Phase II.
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3.4.3 Restricting response derivatives

Frequently, it is useful to impose restrictions using pre-existing derivative or partial

derivative information during the formulation of an empirical model. Although these

constraints require more knowledge of the underlying system, they may result in an

advantageous combination of �rst-principles theory and empirical data. For problems

of this type, regression models must be once- or twice-di�erentiable, depending on

the type of enforced constraints. Restrictions on the feasible regions of the �rst and

second derivatives of each response model, ẑ, with respect to the predictors, x, have

the following functional form.

Ω(X ) := {β ∈ Rm : aᵀ∇xẑ + h(x) ≤ 0, x ∈ X} (3.7)

Ω(X ) :=
{
β ∈ Rm : aᵀ∇2

xẑ + h(x) ≤ 0, x ∈ X
}

(3.8)

First derivative restrictions

Derivative constraints may represent the most elegant combination of empirical data,

�rst principles, experience, and intuition. One ubiquitous example is the monotonicity

of a response variable with respect to one or more predictors. Cumulative distribu-

tions, the entropy of an enclosed system, and gas pressure with respect to tempera-

ture under ideal or near ideal conditions are all examples of monotonic relationships.

Derivative restrictions may also result from imposing initial or boundary conditions

as shown in Section 3.4.4. Below, we include an example demonstrating the impo-

sition of an upper bound on the magnitude of the gradient with the aim of model

smoothing and the reduction of over-�tting.
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Second derivative restrictions

Enforcing bounds on the curvature of a surrogate model can be somewhat more

complicated. For some modeling applications, however, it can be extremely useful.

Consider, for example, the preservation of convexity or concavity of a regression

model; if data is sampled from an underlying convex distribution, the resulting model

is also convex.

Enforcing derivative restrictions is particularly enticing when the resulting meta-

models will be used in an optimization framework. To enforce such a condition, the

modeler must have a priori knowledge of the convexity or concavity of the underly-

ing data set. Additionally, the regression model, ẑ(x), must be twice di�erentiable to

enforce convexity. This type of restriction is enforced by requiring the Hessian matrix

of partial second derivatives H(β, x) to be positive-de�nite. This requirement is, in

turn, enforced by restricting the determinant to be nonnegative:

Ω(X ) := {β ∈ Rm : det(H(β, x)) ≥ 0, x ∈ X} (3.9)

Consider, for example, that we desire to ensure the convexity of ẑ(x1, x2) = β0 +

β1 x1 + β2 x2 + β3 x1 x
2
2 + β4 x

2
1 x2 with the following Hessian matrix.

H(β, x1, x2) =

 2 β4 x2 2 β3 x2 + 2 β4 x1

2 β3 x2 + 2 β4 x1 2 β3 x1


The enforcement of convexity on the feasible region of the regression problem results

from a restriction of the determinant of H to the nonnegative space. This constraint

is nonlinear and nonconvex in the β space. Using a least squares regression object,

enforcing convexity would transform a quadratic problem into a quadratically con-
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strained quadratic problem:

Ω(X ) :=
{
β ∈ R5 : −β3 β4 x1 x2 − β2

4 x
2
1 − β2

3 x
2
2 ≥ 0, x ∈ X

}
(3.10)

In the example below, we model data sampled from z = x2− 0.4x+ 0.04 + ε over

x ∈ [−1, 1] where ε is sampled from a uniform random distribution, ε ∈ [−0.25, 0.25]

using a potential regression model of the form ẑ(x) = β0 +β1 x+β2 x
2 +β3 x

3 +β4 x
4 +

β5 x
5 + β6 x

6 + β7 exp(x). The underlying distribution is convex; therefore, we desire

a convex surrogate model. Beyond the desire to use this information to increase the

accuracy of the surrogate model, there are many cases for which the imposition of

favorable numerical properties onto a model may be bene�cial. In this case, regression

models used for optimization bene�t from a convex surrogate.

To ensure convexity, we enforce a nonegativity bound on the second derivative of

the surrogate model: ẑ′′(x) = 2β2 + 6β3 x + 12 β2
4 + 20 β5 x

3 + 30β6 x
4 + β7 exp(x).

This results in the following Phase I constraints and Phase II subproblem.

Phase I:

2β2 + 6β3 x+ 12 β4 x
2 + 20 β5 x

3 + 30β6 x
4 + β7 exp(x) ≥ 0 x ∈ X l

Phase II:

min
x∈[−1,1]

f = 2βl2 + 6βl3 x+ 12 βl4 x2 + 20 βl5 x
3 + 30βl6 x

4 + βl7 exp(x)

s.t. f ≤ −ε

We begin by solving the unconstrained �tting problem. Next, we compare this

solution to the constrained case with convexity enforcement. To enhance the solution

further, we investigate extending the enforcement domain (discussed in more detail

in the next subsection). The training set consists of 25 points randomly sampled over

x ∈ [−1, 1] and the models are validated using a set of 200 randomly sampled points.
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The unconstrained solution has a highly nonconvex region near the edges of the

x-domain which can be seen in the models and second derivatives for all three cases

in Figure 3.6. Models resulting from the unconstrained, convexity enforced, and

extended enforcement domain methods are provided in Table 3.5 with corresponding

training and test root mean squared errors.

Terms Unconstrained Convexity enforced Extended domain
regression models regression models enforcement

1 ẑ = 1.097x2 no change no change
2 −0.363x+ 1.023x2 no change −0.363x+ 1.023x2

3 −0.356x+ 1.31x2 − 0.581x6 −0.361x+ 1.15x2 − 0.193x4 �

Root mean squared errors:

Training 0.117 0.129 0.137
Test 0.104 0.0791 0.0796

Table 3.5: Models and errors found with unconstrained and enforced convexity

Response
variable,
ẑ(x)

Second
derivative,

d2ẑ

dx2

original problem domain

Figure 3.6: Convexity enforcement example

Enforcing convexity over the original sampling domain leads to a reduction in the

test error of 24%. This occurs despite an increase in the training error of 10%. In both

cases, a three-term model is selected. The solution is further improved by extending

the constraint enforcement to x ∈ [−10, 10]. This results in a functional form that

more closely matches the true function and a model simpli�cation, or complexity
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reduction, without signi�cant test error losses. The next subsection o�ers further

details concerning accuracy improvement enabled by enforcing constraints beyond

the original sampling domain.

3.4.4 Enforcement domain expansion and contraction

In the previous subsections, we primarily restrict the response variables over the

range of the original predictor variable; yet, as previously mentioned, it is possible

to extend this range to include an expected extrapolation range or to contract this

domain to enforce conditions over a subset of X (e.g., boundary or initial values, a

smaller dimensional space, etc.).

Safe extrapolation

By expanding the enforcement domain, we aim to provide a safe extrapolation. While,

in general, robust prediction techniques avoid extrapolation, engineers and scientists

regularly use extrapolation to forecast results beyond an initial sample space [77].

Extrapolation, or using the regression model to predict beyond the range of the

original data, increases the likelihood model error is introduced [77]. For these reasons,

we propose the use of constrained regression over an expanded set x ∈ Xextrap with the

aim of performing safe extrapolation. Safe extrapolation can be used in conjunction

with any of the problem classes described in Section 3.4 to improve extrapolation

accuracy and, often, improve accuracy within the original problem domain.

For further illustration, we revisit the example from Section 3.4.1 involving reac-

tions in series in a batch reactor. Using the same data set and potential set of basis

functions, we model the concentration of B over x ∈ [0.6, 10] while enforcing bounds

on [B] ∈ [0, 1] over the expected extrapolation range of x ∈ [0.1, 11].

Test errors for the unconstrained, constrained, and extended domain enforcement

are provided in Table 3.7. By extending the enforcement domain, we are able to
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reduce the error by a factor of 55.2 over the unconstrained model and 7.61 over the

original constrained models while maintaining a �ve-term solution. The models and

corresponding test errors with model complexity from one to �ve terms are included

in Table 3.6.

Table 3.6: Successive models for ˆ[B](t) with bounds enforced over x ∈ [0.1, 11]

Terms Test error Model, ˆ[B](t)

*1 � 0.261/t

1 0.0378 0.156/
√
t

*2 � 1.39/t2 − 1.38/t3

*2 � −0.102 log t+ 0.219

2 0.0282 0.350/
√
t− 0.105

3 0.0100 −0.0609 t+ 0.00363 t2 + 0.263

4 0.0044 0.456
√
t− 0.281 t+ 0.0208 t2 − 0.000705 t3

*5 � −1.29 log t− 1.03/t+ 0.0799/t2 + 1.20
√
t− 0.0719 t

5:�nal 0.00155 3.30 · 10−6 exp t+ 0.458
√
t− 0.280 t+ 0.0180 t2 − 5.16 · 10−5 t4

*Unsuccessful trial model

Table 3.7: Test error over the original and extended domains for each regression
method

Test error
Original domain Extended domain

t ∈ 0.6, 10 t ∈ 0.1, 0.6 and t ∈ 10, 11

Unconstrained regression model 0.0856 0.951
Original domain constrained 0.0118 0.0788
Extended domain constrained 0.00155 0.00717

Figure 3.7 shows the true concentration curve, data, and the three models over

both the original problem domain and extended enforcement domain. By extending

the enforcement domain, we are able to better predict the model over the extended

domain and the original problem domain. The extrapolation errors calculated from

500 additional validation points sampled over for each expansion domain: t ∈ [0.1, 0.6]

and t ∈ [10, 11]. These errors and the test error over the original problem domain are

provided in Table 3.7.
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[B]

t

Figure 3.7: Model results for the concentration of B

As we increase the restriction on the regression on this problem, inverse bases

functions become inactive in exchange for terms that are more favorable at small

values of t. This is evident in both the original constrained models and the extended

domain constrained models. Constraining the model in the x- and z-space forces

the regression to select terms and parameter values (i.e., restrict β) without a priori

knowledge of relationships among terms and the β space.

Boundary and Initial conditions

Enforcing boundary conditions while modeling empirical data often leads to a more

physically consistent regression model. Boundary conditions are imposed on ordi-

nary or partial di�erential equations and are categorized into three types: Dirichlet,

Neumann, and Robin. Often, these conditions are enforced in a reduced dimensional

space. For example, initial conditions provide speci�cations on the time domain,

t = 0, without restricting the space domain. For these problems, we reduce the

enforcement domain by one or more dimensions xi to X ∩ {xi = x∗i }.

Dirichlet boundary conditions specify the value of the solution, z, at a �xed lo-

cation, x∗i , of the x-domain. Neumann boundary conditions specify the value of the

gradient at a �xed location in at least one dimension, x∗i . Finally, Robin boundary

conditions specify a linear combination of function values and derivatives at a �xed

location in the domain. The imposition of Dirichlet boundary conditions results in a
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feasible region that is similar to that provided by Equation 3.4, while Neumann and

Robin conditions result in the form described by Equations 3.7 and 3.8.

Standard boundary conditions require semi-in�nite equality constraints and en-

forcing these constraints may impede the convergence of the optimization solver.

Instead, we permit an ε-tolerance on the slack of the equality as follows for a, b ∈ Rn.

Ω(X ) :=β ∈ Rm :
ẑ(x; β) + aᵀ∇xẑ + bᵀ∇2

xẑ − h(x) ≤ εviol

ẑ(x; β) + aᵀ∇xẑ + bᵀ∇2
xẑ − h(x) ≥ −εviol

x ∈ X ∩ {xi = x∗i }


These constraints allow a modeler to use both high �delity, simulation data and �rst

principles boundary conditions.

3.5 Computational experiments

In this section, we demonstrate e�cacy of the proposed methods through a computa-

tional study and compare the accuracy of constraining the x- and z-space in contrast

to unconstrained regression. For each instance, we use a �xed data set from which

we generate a regression model three ways:

1. Unconstrained: Subset regression using ALAMO

2. Constrained: Constrained subset regression over the original problem domain

using ALAMO

3. Extended domain constrained: Constrained subset regression over an extended

or expected extrapolation problem domain using ALAMO.

The test set includes three types of underlying functions: chemical reactor mod-

els, normal distributions, and logistic problems that have upper and/or lower bounds.

Details of each category are provided in Table 3.8. In total, the test set contains 120
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problems. Ten functional forms from each category are generated using random pa-

rameter values sampled from a uniform distribution over the variable ranges speci�ed

in Table 3.8. Using a Latin hypercube design of experiments, four distinct data sets

per functional form are generated and tested. The potential functional forms for each

regression model include exponentials, logarithms, and several powers: ±0.5, ±1, ±2,

±3, ±4.

Table 3.8: Description of problem types in the computational test set

Problem type Description Data set sizes Random
parameters

Batch reactor Batch reactor concentration
of B, A

ka−→ B
kb−→ C,

[A]0 = 1, [B]0 = 0, and
[C]0 = 0.

3, 10, 10, 10 ka ∈ [0.1, 2],
kb ∈ [0.1, 2]

Normal distribution Normal distribution with
mean µ and standard
deviation σ

3, 10, 10, 10 µ ∈ [1, 10],
σ ∈ [1, 3]

Logisitic curve Logistic function with
multiplier a and o�set b,
1/ (1 + exp(−a(x− b)))

3, 10, 10, 10 a ∈ [0, 5],
b ∈ [3, 7]

Speci�cations for Methods 2 and 3 are summarized in Table 3.9. The logistic

and batch reactor test instances are bounded from above and below while the normal

distribution is bounded from below.

Table 3.9: Constrained regression speci�cations

Problem type Bounds enforced Original problem
domain

Extended problem
domain

Batch reactor 0 ≤ [B] ≤ [A]0 t ∈ [0.6, 10] t ∈ [0.5, 11]
Normal distribution 0 ≤ z x ∈ [1, 10] x ∈ [0.5, 11]
Logisitic curve 0 ≤ z ≤ 1 x ∈ [1, 10] x ∈ [0.5, 11]

To compare the three methods, we use the error factor, de�ned by Equation 3.3,

as a model quality metric. The cumulative distribution of error factors for the three

methods is plotted in Figure 3.8. Here, four factors are considered:
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1. Training error: error between the model and the points used to train the model

2. Original domain test error: error between the model and 1000 randomly sampled

points over the original problem domain

3. Lower extended domain test error: error between the model and 500 randomly

sampled points over the domain extended to smaller values of the predictor

variables

4. Upper extended domain test error: error between the model and 500 randomly

sampled points over the domain extended to larger values of the predictor vari-

ables.

Fraction of problems solved vs. Error factor

Original domain test error Training error

Lower extended domain Upper extended domain

Figure 3.8: Computational results

The plots in Figure 3.8 depict a race-to-the-top metric. Therefore, curves that

climb higher for smaller values of the error factor signify more accurate regression
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modeling. Since the primary purpose of these regression models is an accurate repre-

sentation of true functional form, we �rst consider the test accuracy over the original

sample space. In 48% of the problems, constrained regression is either the most accu-

rate or equal to the most accurate over this domain and continues to be particularly

dominant over the unconstrained regression models. Yet, the unconstrained regres-

sion models have signi�cantly smaller training error, with errors at least as low as

the smallest training error in 87% of the problems. In the �nal 13% of the test set,

constrained regression generates more complex models than unconstrained regression.

This superior prediction capability further motivates the addition of response variable

bounds to improve model accuracy over a simple empirical data modeling technique.

By extending the bound enforcement domain as described in Table 3.9, the test

error over both the lower and upper extrapolation range is improved to allow for

safer model extrapolation. The extended domain constrained models demonstrate

the highest accuracy for 58 and 60% of the problems for the lower and upper bounds,

respectively. These extended domain methods are dominant over unconstrained mod-

els and are superior to constraining only the original problem space. In particular,

there is bene�t in the lower extrapolation of these extended constraints over the

unconstrained case.

In order to achieve this increased model accuracy, constrained regression does re-

quire additional computation e�ort. Up to �ve points are added to each discretized

Phase II problem. In most cases, if the trial model violates a bound, all �ve points are

returned. However, some problems resulted in fewer than �ve violated points. The

constrained regression statistics (feasible set size, total constrained regression itera-

tions, and regression resolves required) for this problem set are provided in Table 3.10.

Constraining the regression problem over the expanded domain requires more regres-

sion re-solves and iterations than constraining the original problem domain.
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Table 3.10: Constrained regression solution statistics

Points in the Constrained Additional regression
�nal feasible set regression iteration problems solved

Mean Range Mean Range Mean Range
Original domain 7.52 [0, 25] 1.93 [1, 3] 1.58 [0, 7]
Extended domain 10.7 [0, 35] 2.28 [1, 6] 2.50 [0, 18]

For the problems shown, constraints enforcing bounds on the response variables

not only generate more physically realizable models, but use this information to build

more accurate models and to enhance extrapolation accuracy.

3.6 Conclusion

The combination of data-driven modeling and theory-driven a priori knowledge re-

sults in higher quality of surrogate models and the e�ects are measured by both phys-

ical relevance and model accuracy. We introduce a novel approach to constrained

regression: restricting the original problem in the space of predictor and response

variables. Constraints of this more intuitive form can be used to reveal hidden rela-

tionships between regression coe�cients that are otherwise unknown to the modeler.

In particular, we describe several classes of problems that lead to intuitive constraints

including zero-order bounds of response variables, thermodynamic limitations, safe

extrapolation, boundary conditions, and enforcing favorable numerical properties on

�rst and second derivatives. Through extensive testing, we demonstrate the capabil-

ity of these restrictions to improve model accuracy in addition to ensuring adherence

to physical limits.

We conclude that a priori information from �rst principles, intuition, and other

system knowledge can be used to enhance data-driven modeling with many model

selection and regression methods, from ordinary least squares regression to subset

selection and regularized regression.
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Chapter 4

A global optimization approach to

symbolic regression

Symbolic regression methods generate expression trees that simultaneously

de�ne the functional form of a surrogate model in addition to regression

parameter values. As a result, the regression problem can search many

nonlinear functional forms using only the speci�cation of simple mathe-

matical operators such as addition, subtraction, multiplication, and divi-

sion, among others. Currently, state-of-the-art symbolic regression meth-

ods leverage genetic algorithms and adaptive programming techniques.

Genetic algorithms lack optimality certi�cations and are typically stochas-

tic in nature. In contrast, we propose an optimization formulation for the

rigorous deterministic optimization of the symbolic regression problem.

We present a disjunctive optimization formulation used to solve the

symbolic regression problem as well as several performance-enhancing im-

provements. We demonstrate this symbolic regression technique using an

illustrative example and compare our formulation and improvements in an

array of experiments based upon two literature instances.
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4.1 Introduction

Traditional regression and model selection methods seek to develop regression models

with a pre-determined model structure or a set of alternative model structures. In

contrast, symbolic regression aims to learn the functional forms and corresponding

model parameters simultaneously [63, 64]. Traditional regression techniques limit

the scope of model development to a �xed functional form, e.g. linear, quadratic,

exponential, logarithmic, or some combination of pre-determined functions. Sym-

bolic regression requires only the speci�cation a set of operators and operands

(+, −, ∗, ÷, exp(·), log(·), (·)2, (·)3,
√
·, x, constant, etc.). Increasing the

�exibility of the regression data structure allows for the modeling of black boxes with

unknown functional forms and results in a model that not only describes the data

accurately, but can provide insights into the underlying processes. These methods

have shown success over a wide range of applications: chemical systems [11, 72, 73],

�uid dynamics [106], control engineering and system dynamics [9, 52], pattern

classi�cation [54], �nance [20], and natural sciences [89].

Symbolic regression, also known as function identi�cation and empirical design,

begins with an idea that any expression can be written as an expression tree [63]. An

expression tree recursively de�nes the order of operations in a function using operands

at leaf nodes and operators for all other nodes. Expression trees need not be binary;

however, we limit the scope of this work to binary expression trees.

To evaluate an expression tree, each operator is applied recursively starting at

the root node. This tree structure encodes the order of operations, or parenthetical

structure of the model's functional form, using the depth of each node. Figure 4.1

shows the expression tree for
2x1

5− x2

. Often, small changes in the expression tree

result in large changes in model structure. By changing only the root node operator,

the resulting expression tree now represents 2x1 + x2 − 5.
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÷

*

2 x1

−

5 x2

2x1/ (5− x2)

−−−−−−−→
change root
operator

-

*

2 x1

−

5 x2

2x1 + x2 − 5

Figure 4.1: Expression tree examples

To generate an accurate regression model, symbolic regression minimizes an error

metric, such as the sum of the squared error between response data and the root

node value of the expression tree [108]. The structure, size, and activity or value of

each node is chosen to minimize this overall error metric. The goal of this process

is to optimize both the structure of the tree and the activity or value of each node

simultaneously.

Symbolic regression is currently approached as an application of Genetic Pro-

gramming (GP), the systematic method for training a computer to solve high-level

problems by combining simpler functions and subroutines [64]. Genetic program-

ming describes how computers learn speci�c tasks without a programmer's explicit

instructions [63]. GP methods adjust and improve the expression or syntax tree using

an iterative application of techniques that are common to evolutionary optimization

algorithms.

A GP application begins with an initial population of individuals or randomly

selected expression trees. These trees are compared by a �tness measure, the error

metric. Individuals with high scores have a higher probability of being selected for

the next iteration of crossover, mutation, and reproduction. The crossover step gen-

erally includes exchanging the subtrees of two individuals. Mutations for individual

expression trees can include replacing a subtree with a random subtree, shrinkage

mutations, or the random promotion of a subtree to a higher level. Both crossover
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and mutation are used for reproduction to de�ne a new generation of o�spring or

population of expression trees [63].

The fundamental concepts behind symbolic regression are not restricted to GP.

Almost exclusively, however, symbolic regression is performed using evolutionary

algorithms�so much so that symbolic regression is often used interchangeably with ge-

netic programming. Often, genetic algorithms can �nd very good solutions; however,

there is no guarantee of either local or global optimality [23]. In fact, a publication

by Korns states �in current state-of-the-art symbolic regression engines, accuracy is

poor� [62] to describe the mismatch between the true and surrogate functional form

found using published state-of-the-art symbolic regression techniques. Korns states

that this is even a concern for one-basis models with minimal tree depth. To our

knowledge, there has been no investigation that applies rigorous, global optimization

methods to the symbolic regression problem.

In this chapter, we show that the symbolic regression problem can be formulated

as a nonlinear nonconvex disjunctive program and can be solved to global optimality.

Using this model, we describe techniques that improve surrogate model quality as

well as the solution speed of the optimization model. The e�cacy of these methods

is demonstrated using standard literature test cases.

4.2 Proposed model

In this section, we describe the application of a nonconvex mixed-integer nonlinear

disjunctive programming formulation to solve the symbolic regression problem using

rigorous, global optimization.
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4.2.1 Formulation

Figure 4.2 shows an expression tree with a depth of D and N = 2D − 1 nodes.

Each node n contains either an operand (xd, constant, etc.) or an operator

(+, −, ∗, ÷, exp(·), log(·), (·)2, (·)3,
√
·, x, constant, etc.) that acts on the left

and/or right child, ln and rn, respectively.

n=1
l1 = 2
r1 = 3

2
l2 = 4
r2 = 5 left child of 1

4

...

n−1 n

Disjunction over each node
{+} ∨ {−} ∨ {∗} ∨ {÷} ∨ {cst} ∨ {xd} ∨ . . .

...

5

...
...

3 right child of 1

6

...
...

7

...
...

N D

...

3

2

depth= 1

· · ·
terminal nodes

Figure 4.2: Binary tree with indices structure

Each node has a value vin for all data points i = 1, 2, . . . , ndata, that is computed

through the recursive application of the operators and operands of the children of

node n. For each node, we apply a single disjuction that determines which operator

or operand is active. A list and description of commonly used operators and operands

is given in Table 4.1 along with other notation used in this model.

Using this tree and index assignment given in Figure 4.2, we formulate the follow-

ing disjunctive optimization problem.
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Table 4.1: Notation

Variable Description De�ned for elements Allowed values

Parameters

zi Response z at data point i i = 1, 2, . . . , ndata given

xid Predictor xd at data point i i = 1, 2, . . . , ndata,
d = 1, 2, . . . , npred

given

Variables

vin Value at node n and data
point i

i = 1, 2, . . . , ndata,
n = 1, 2, . . . , N

[
vloin, v

up
in

]
yon Binary activity variable of

operator o at node n
o ∈ O,
n = 1, 2, . . . , N

{0, 1}

βn Model parameter for node n n = 1, 2, . . . , N
[
βlon , β

up
n

]
Sets

O Superset of simple
operators

� O ∈ B ∪ U ∪ L

B Binary operators � {+,−, ∗,÷, . . .}
U Unary operators � {exp, log, sqr, . . .}

L Leaf node types �
D⋃
d=1

{xd} ∪ {cst}

V Variable operands �
D⋃
d=1

{xd}

TERM Terminal nodes � {n; d = D}
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min

ndata∑
i=1

(zi − vi1)2 (4.1a)

s.t.
∨
o∈O



yon = 1

foi (vin, viln , virn , xid) = 0

goi (vin, viln , virn , xid) ≤ 0

i =, 1, 2, . . . , ndata


∨


∑
o∈O

yon = 0

vin = 0

i =, 1, 2, . . . , ndata

 n /∈ TERM (4.1b)

∨
o∈L



yon = 1

foi (vin, xid) = 0

goi (vin, xid) ≤ 0

i =, 1, 2, . . . , ndata


∨


∑
o∈L

yon = 0

vin = 0

i =, 1, 2, . . . , ndata

 n ∈ TERM (4.1c)

∑
o∈O

yon ≤ 1 n = 1, 2, . . . , N (4.1d)

∑
o∈B∪U

yon ≤ yoln n = 1, 2, . . . , N (4.1e)

∑
o∈B

yon ≤ yorn n = 1, 2, . . . , N (4.1f)

∑
o∈U∪L

yon ≤ 1− yorn n = 1, 2, . . . , N (4.1g)

∑
o∈L

yon ≤ 1− yoln n = 1, 2, . . . , N (4.1h)

∑
o∈V

yon ≥ 1 (4.1i)

yon ∈ {0, 1} n /∈ TERM o ∈ O (4.1j)

yon ∈ {0, 1} n ∈ TERM o ∈ L (4.1k)

vin ∈
[
vloin, v

up
in

]
n = 1, 2, . . . , N i = 1, 2, . . . , ndata (4.1l)
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Here, we show a squared error minimization objective; however, this formulation can

be easily expanded to other loss functions such as linear error, Mallow's Cp, or information

criterion. We seek to minimize the squared error between response variable zi based on the

modeled value at the root node, vi1, over the training data set i = 1, 2, . . . , ndata. The model

is a function of predictor variables xd in npred dimensions. The disjunctions are modeled

using binary variables yon, where an operator or operand o is active at node n if yon = 1 and

inactive otherwise.

If active, each node can take on a value in one of three categories: binary operator, unary

operator, or leaf node operand. This classi�cation provides the basis for logical constraints.

Each binary operator is applied using both children nodes while a unary operator uses only

the value of the left node. The leaf node operands are speci�ed as constants, cst, or set

by the value of a predictor variable x. The speci�c application, fo, of the operators and

operands is given in Table 4.2. Additional requirements for an operator or operand are given

by go. For division, y÷n = 1, g÷ bounds the denominator, or right child, away from zero with

a small number ε to avoid dividing by zero. The numerator is also bounded away from zero

to avoid arbitrary solutions. We also require the left child to be strictly positive for both

logarithms and square roots.

The disjunction for each node over o ∈ O de�nes which operator or operand is active

at node n, the operation foi that is applied, and the corresponding special restrictions goi

applied for each data point i. The �rst constraint, Equation 4.1b describes the disjunction

over all nonterminal nodes n /∈ TERM. All operators and operands are available as non-

terminal nodes. Terminal nodes n ∈ TERM, however, are restricted to leaf node operands.

Equation 4.1c shows the disjunction for terminal nodes. If no operators or operands are

active, the value vin is set to zero for each node. Equation 4.1d ensures that up to one

operator or operand is active at each node. Logic constraints 4.1e�4.1h are used to ensure

the correct activity of children nodes based on the operator and operand category. If any

binary operator o is active at node n, Equation 4.1e and 4.1f ensure that both children

nodes are active. Equations 4.1e and 4.1g certify the left child is active and the right child

is inactive if any unary operator is activate at node n. Finally, if a leaf node operand is
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Table 4.2: List of simple operators and operands

Description Binary f oi = 0 goi ≤ 0

Binary operations

Addition y+
n viln + virn − vin

Subtraction y−n viln − virn − vin
Multiplication y∗n viln virn − vin
Division y÷n viln − vin virn ε− (virn)2

ε− (viln)2

Power y∧n viln
∧virn − vin ε− virn

Unary operations

Exponential yexpn exp (viln)− vin
Logarithm ylogn viln − exp (vin) ε− viln
Square ysqrn (viln)2 − vin
Cube ycuben (viln)3 − vin
Square root ysqrtn viln − (vin)2 ε− viln

Leaf node operands

Variable yxdn xid − vin
Constant ycstn vi′n − vin, ∀i 6= i′

active, then Equations 4.1g and 4.1h ensure the inactivity of both children nodes. The �nal

constraint, Equations 4.1i, ensures that the model is a function of at least one variable.

We model this nonconvex nonlinear disjunctive program (Equations 4.1a� 4.1l) using a

big-M mixed-integer nonlinear programming (MINLP) formulation [41] as follows:
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min

ndata∑
i=1

(zi − vi1)2

s.t. foi (vin, viln , virn , xid) ≤M
o
in (1− yon) n /∈ TERM, o ∈ O, i =, 1, 2, . . . , ndata

foi (vin, viln , virn , xid) ≥Mo
in (1− yon) n /∈ TERM, o ∈ O, i =, 1, 2, . . . , ndata

goi (vin, viln , virn , xid) ≤ Goin (1− yon) n /∈ TERM, o ∈ O, i =, 1, 2, . . . , ndata

vin ≤ vup
in

∑
o∈O

yon n /∈ TERM, o ∈ O, i =, 1, 2, . . . , ndata

vin ≥ vlo
in

∑
o∈O

yon n /∈ TERM, o ∈ O, i =, 1, 2, . . . , ndata

foi (vin, viln , virn , xid) ≤M
o
in (1− yon) n ∈ TERM, o ∈ L, i =, 1, 2, . . . , ndata

foi (vin, viln , virn , xid) ≥Mo
in (1− yon) n ∈ TERM, o ∈ L, i =, 1, 2, . . . , ndata

goi (vin, viln , virn , xid) ≤ Goin (1− yon) n ∈ TERM, o ∈ L, i =, 1, 2, . . . , ndata

vin ≤ vup
in

∑
o∈L

yon n ∈ TERM, o ∈ L, i =, 1, 2, . . . , ndata

vin ≥ vlo
in

∑
o∈L

yon n ∈ TERM, o ∈ L, i =, 1, 2, . . . , ndata

∑
o∈O

yon ≤ 1 n = 1, 2, . . . , N

∑
o∈B∪U

yon ≤ yoln n = 1, 2, . . . , N

∑
o∈B

yon ≤ yorn n = 1, 2, . . . , N

∑
o∈U∪L

yon ≤ 1− yorn n = 1, 2, . . . , N

∑
o∈L

yon ≤ 1− yoln n = 1, 2, . . . , N

∑
o∈V

yon ≥ 1

yon ∈ {0, 1} n /∈ TERM, o ∈ O

yon ∈ {0, 1} n ∈ TERM, o ∈ L

vin ∈
[
vloin, v

up
in

]
n = 1, 2, . . . , N, i = 1, 2, . . . , ndata
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In this formulation, we choose big-M values using interval arithmetic to �nd the upper

M and lower bounds M for each constraint foi at each node given limits on the values of

each nodes vloin and vupin . We de�ne the upper bound G for goi using a similar procedure.

The following section includes an explanatory example using this formulation to solve a

two-dimensional symbolic regression problem.

4.2.2 Illustrative example

To illustrate the MINLP formulation and its relationship to the structure of the expres-

sion tree, we detail a two-dimensional example problem. For conciseness, we will limit

the problem to addition, subtraction, multiplication, and division with a maximum tree

depth of three and N = 7. This results in B = {+, −, ∗, ÷}, L = {x1, x2, cst}, and

TERM = {4, 5, 6, 7}. The training set consists of ten data points on the curve z =
2x1

5− x2

over 0 ≤ x1, x2 ≤ 1 sampled at random values for x1 and x2. The resulting symbolic regres-

sion model, including big-M constraints, has 70 continuous variables, 33 binary variables,

and 1,378 constraints. The model is solved using the global optimization solver SCIP [102]

with bounds for vin for nodes n > 1 set to [−100, 100]. Root node bounds are deter-

mined assuming a model that remains within two standard deviations of the true value:

[vlo
i1, v

up
i,1] = [zi − 2σ, zi + 2σ]. The optimal expression tree is shown in Figure 4.3 and an

instance i′ of this tree at data point (xi′1, xi′2) = (0.36, 0.60) is shown in i′ Figure 4.4.

÷
n = 1

zi = vi1
vi1 = vi2/vi3
y÷1 = 1

*

2
vi2 = vi4 vi5
y∗2 = 1

2

4

v·4 = 2
ycst4 = 1

x1

5

vi5 = xi1
yx1

5 = 1

−
3

vi3 = vi6 − vi7
y−3 = 1

5

6

v·6 = 5
ycst5 = 1

x2

7

vi7 = xi2
yx2

7 = 1

Figure 4.3: Expression tree for
2x1

5− x2

with relevant decision variable values
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÷
n = 1

zi′ = vi′1 = 0.164

*

2

vi′2 = 0.72

2

4

vi′4 = 2

x1

5

vi′5 = 0.36

−
3

vi′3 = 4.40

5

6

vi′6 = 5

x2

7

vi′7 = 0.60

Figure 4.4: Expression tree for
2x1

5− x2

for i = i′ at (xi′1, xi′2) = (0.36, 0.60)

Typical symbolic regression methods utilize a pareto analysis [93] to analyze the trade-

o� between model complexity and model accuracy. Here we accomplish this by imposing

an additional constraint on the total number of active nodes
N∑
n=1

∑
o∈O

yon ≤ T , where T is

increased over the range 1 to N . However, the same curve can be generated by minimizing

the number of active nodes given an upper limit on the arror objective that can be succes-

sively increased from zero to a large value. In fact, some problems may solve more quickly

using this objective rather than the error objective. The expression trees that result from

parameterizing the solution with respect to T are shown in Figure 4.5.

0.24

One node
ẑ(x) = 0.2405

∗

Three node
0.4434x1

0.44 x1

*

Five node
0.42 (x1 + 0.039)

0.42 +

x1 0.04

-

Seven node
−2.00x1/ (−5.00 + x2)

*

x1 −2.

+

−5. x2

Figure 4.5: Expression trees with increasing complexity

Figure 4.6 shows the pareto curve of the sum of the squared error versus active nodes

for this analysis. In general, desired models are selected using several criteria derived from

the pareto front. For example, they may occur at the beginning of long �at plateaus or after
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a large cli�, here that might mean using the 3-node model ẑ(x) = 0.4434x1. Alternatively,

they may be chosen when the error reaches a desired level; in this case the error drops to zero

with a 7-node model ẑ =
2x1

5− x2
. The latter criterion would result in a match with the actual

underlying function. However, models are often selected using a goodness-of-�t criterion

such as Akaike information criterion [5], Bayesian information criterion [95], generalized

information criterion [95], or cross-validation. For the expression trees in Figure 4.5, we

solve the models using SCIP with a tightened constraint feasibility tolerance of 1 · 10−10.

Objective,
training error

3 node model
with squared
error of 0.0306

Number of active nodes

Figure 4.6: Pareto curve of error versus tree size for illustrative example

By solving this problem using symbolic regression, we are able to determine both the

functional form and the values of associated modeling parameters that best �t the underlying

data. Due to this algebraic formulation, we are able to solve this problem using a global

optimization method to show that we arrive at the best possible model for each tree size.

4.3 Strengthening the formulation

In this section, we explore three methods to improve the model outlined in Section 4.2.1: re-

dundancy elimination, symmetry-breaking cuts, and depth-based binary variable priorities.

Redundancy elimination

Often, there are multiple, equivalent formulations to express an underlying functional form.

These can lead to degenerate or multiple solutions as well as increased computational re-

source requirements caused by comparisons between redundant solutions. For example, the
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following models are all equivalent:

Final : ẑ(x) = 0.2 (x+ (−2))

Equivalent models : ẑ1(x) = 0.2 (x+ 2− 4)

ẑ2(x) = 0.2
(
x−
√

4
)

ẑ3(x) = 0.2 (x− 2)

ẑ4(x) =
x+ (−2)

5

ẑ5(x) = 0.2
(√

x2 + (−2)
)
.

To eliminate many unnecessary comparisons and enhance the performance of the op-

timization solver, we further constrain the symbolic regression problem by eliminating re-

dundancies involving the parent node and its children. We exclude redundancies in three

categories: the redundant manipulation of constants, redundant binary operations, inverse

redundancies of unary operators.

To eliminate the unnecessary manipulation of constant terms, we include the following

two logical constraints,

ycst
ln + ycst

rn ≤ 1 n /∈ TERM (4.2a)

ycst
ln ≤ 1−

∑
o∈U

yon n /∈ TERM (4.2b)

where constraint 4.2a eliminates all binary operations involving only constants and con-

straint 4.2b ensures unary operations do not have a constant argument. These two con-

straints result in the infeasibility of ẑ1 and ẑ2.

To avoid equivalent models that arise from a combination of addition and subtraction or

multiplication and division, we restrict the subtraction and division operations as follows:

y−n + ycst
rn ≤ 1 n /∈ TERM (4.3a)

y÷n + ycst
rn ≤ 1 n /∈ TERM. (4.3b)
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Constraint 4.3a allows for model ẑ instead of ẑ3 by disallowing the subtraction of a constant

in favor of adding a negative number. Alternatively, we could eliminate this redundancy by

disallowing the addition and subtraction of negative numbers. This would require constrain-

ing virn ≥ 0 if y+
n = 1 or y−n = 1, however, and Equation 4.3a is a more favorable logical

constraint that eliminates the same redundancy. Similarly, Equation 4.3b does not allow for

dividing by a constant value which would eliminate model ẑ4.

Lastly, we avoid performing nested inverse operations using

yon + yo
′
ln ≤ 1 n /∈ TERM (4.4)

yo
′
n + yoln ≤ 1 n /∈ TERM (4.5)

for all inverse unary operation pairs o and o′, including squares and square roots and log-

arithms and exponentials. Constraints 4.4 and 4.5 eliminate ẑ5 from the feasible model

set.

Symmetry-breaking cuts

In addition to the redundant formulations above, many symmetries with expression trees lead

to redundant solutions. In fact, for every symmetric operator, there is a corresponding tree

symmetry. Figure 4.7 gives three equivalent trees with symmetries over order-independent

operators o ∈ I where I := {+, ∗}.

*

ẑ1(x) = 2 ∗ (5 + x)

2 +

x 5

*

ẑ2(x) = 2 ∗ (x+ 5)

2 +

5 x

*

ẑ3(x) = (5 + x) ∗ 2

+

x 5

2

Figure 4.7: Three equivalent expression trees due to symmetric operators
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Table 4.3: Binary priorities for the illustrative example

Binary variable Priority

yo1 o ∈ O 1
yo2, y

o
3 o ∈ O 2

yo4, y
o
5, y

o
6, y

o
7 o ∈ L 3

To eliminate these symmetries, we apply symmetry-breaking cuts

vi′ln − vi′rn ≥ −M
∑
o∈I

yon (4.6)

for one data point i = i′ as a big-M constraint where M is set using interval arithmetic on

the bounds of vi′ln and vi′rn .

Node priorities

The solution speed of branching-based optimization methods is often sensitive to the priority

given to integer or binary variables. For the symbolic regression problem, it is easy to see

in Figure 4.1 that changes in node activity at higher tree depths have a greater impact

on the �nal surrogate model while changes lower in the tree have less e�ect. To pass this

information to the solver, we will set the priority of each node to its tree depth. For the

illustrative example, we use the binary priorities listed in Table 4.3.

4.4 Demonstrations

In addition to the illustrative example, we have selected two problems that, at �rst ap-

pearance, are simple. However, they have been shown to be very challenging for standard

symbolic regression packages [53, 101]. Standard symbolic regression packages employ ge-

netic programming methods, which are inherently stochastic. Therefore, the metric used to

compare the e�cacy of these methods in the cited literature is the success rate as measured

by the percentage of runs with a mean squared error less than some small tolerance.
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For each instance, we provide results with and without redundancy constraints,

symmetry-breaking cuts, and depth-based priority de�nitions from Section 4.3 including

data for all eight combinations of these three elements. We also compare alternative

problem objectives: minimizing the squared error and minimizing the number of active

nodes for a given error tolerance. For these problems, we use a tolerance of zero.

All tests were performed using a GAMS 24.2.2 interface to SCIP 3.0 with CPLEX

12.6.0.0, IPOPT 3.11, cppad 20120101.3, and GMP 4.2.2 on a 64-bit Genuine Intel

E6420 2.13GHz processor.

4.4.1 Illustrative example

We continue with the illustrative example from Section 4.2.2, where we model the following

function:

z(x) =
2x1

5− x2

using ten randomly sampled points in x1 and x2 from 0 to 1. We have already demonstrated

the e�ectiveness of this formulation to determine this functional form of the model from

these ten data points. In this section, we examine the e�cacy of the three improvements

introduced in Section 4.3.

This symbolic regression problem has 70 continuous and 33 binary variables. The base-

case problem has 1,378 constraints which is increased by 15 when redundancy constraints

are added and by 3 to include symmetry-breaking cuts.

To compare all eight combinations of constraints, we include solution times for the

error minimization problem in Table 4.4. The results indicate that the most bene�cial

addition is the redundancy-eliminating constraint set. This is evidenced by a reduction of

required computational time all four cases: from 710, 200, 270, and 68 seconds to 16, 40,

9, and 54 seconds, respectively. Adding redundancy-eliminating constraints leads to speed

improvements of 43, 5.0, 28, and 1.3 times, where other conditions remain constant. Depth-

based binary branching priorities speed up the solution by 2 to 5 times when redundancy
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constraints are enabled, and increase solution time when they are not used. The inclusion

of symmetry-breaking constraints increases the solution time in most cases.

Table 4.4: Illustrative example � Solution time for the error minimization problem
[seconds]

Depth-based priorities
Redundant constraints Symmetry cuts Use Ignore

Use Use 16 40
Omit 9 54

Omit Use 710 200
Omit 270 68

We also investigate the active node minimization problem with resulting solution speeds

summarized in Table 4.5. We observe that all additional elements are bene�cial, both

individually and when combined. Moreover, the solution improvement between the base

case and the complete case, where the former has no additional elements included and the

latter implements all three elements combined, is the most signi�cant. The complete case

solved in the shortest time, while the base case problem is not solved within the 1000 second

time limit. The active node minimization problem solves, on average, 16 times faster than

the error minimization problem for this example. The base case is the only notable exception

because it could only be solved for the error minimization problem within the time limit.

Table 4.5: Illustrative example � Solution time for the active node minimization
problem [seconds]

Depth-based priorities
Redundant constraints Symmetry cuts Use Ignore

Use Use 7 15
Omit 11 13

Omit Use 9 119
Omit 12 >1000

On an individual basis, the most favorable additions to the error minimization problem

are the redundancy-eliminating constraints. Additional improvement is observed with the
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inclusion of depth-based branching priorities. The same is true for the, easier to solve, active

node minimization problem with the added freedom of depth-based priorities exhibiting

improvements on an individual basis. Using the disjunction optimization formulation, we

are able to identify and globally certify the best surrogate model using a set of simple

operators and operands.

4.4.2 Example 2

For Example 2, we model the equation:

z(x) = x2 + 100

from Keijzer [53] where the input x consists of 21 evenly spaced points between -1 and 1.

Keijzer reports a success rate of 16% with an error tolerance of 0.001 on this simple problem

using genetic programming. In other words, 16% of the trials return an expression tree

model with a mean squared error less than 0.001.

We model the same data using addition, subtraction, multiplication, division, and square

root operators applied to operands x and a constant term. This allows for the same solution

�exibility the Keijzer allowed for in [53]. We bound each node value vin for n > 1 to

be within ±150, the same criteria used in the illustrative example to bound the root node

values, and allow a maximum tree depth of four.

The resulting optimization model has 421 variables (105 binary and 315 continuous). The

base problem contains 9,545 constraints, while redundancy-elimination requires 42 additional

constraints and symmetry-breaking constraints require 7. Due to the nature of the operators

in this problem, we are able to solve a nonconvex mixed-integer quadratically constrained

program (MIQCP).

The optimal �nal expression tree is depicted in Figure 4.8. This tree represents the

optimal solution for all eight cases; however, each case may result in di�erent, but equivalent,

trees primarily due to cases where redundant constraints and symmetry cuts are not used.
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+

100 *

x x

Figure 4.8: Optimal expression tree for Example 2

For this instance, the solution of the active node minimization problem is found to

be more rapid and reliable. Table 4.6 shows the solution times for all eight cases. All

cases are solved in less than one minute; whereas, for error minimization problem, only a

single case could be solved within an hour. For this problem, using depth-based binary

branching priorities has little e�ect on the solution speed and the addition of symmetry-

breaking cuts was, in general, not bene�cial. The redundancy-elimination constraints are

bene�cial in conjunction with symmetry-breaking cuts. In fact, the best performing case

has no additional constraints, with or without branching priorities enabled. This is likely

because the added constraints signi�cantly reduce the feasible space. For this instances,

feasible point identi�cation is the primary di�culty due the zero tolerance speci�cation on

the error.

Table 4.6: Example 2 � Solution time for the active node minimization problem
[seconds]

Depth-based priorities
Redundant constraints Symmetry cuts Use Ignore

Use Use 26 28
Omit 14 10

Omit Use 54 32
Omit 5 5

When minimizing model error, the results convey the bene�ts of added constraints. Out

of the eight cases tested, only one is solved to optimality within a one hour time limit;
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the combination of redundancy constraints and depth-based priorities decreases the solution

time to 893 seconds. The objective values after 3600 seconds are provided for each case in

Table 4.7.

The solution methods employed by SCIP involve the generation of upper objective

bounds on feasible solutions and certi�able lower objective bounds [102]. As the opti-

mization routine progresses, the distance between these bounds closes until the algorithm

converges. If the solver terminates before this, we compare progress by looking at the upper

and lower objective bounds. The smaller this gap, the better the progress. Therefore, we

report the best found objective values, or upper bounds, after 3600 seconds for each case in

Table 4.7. For all cases, the lower bound is zero.

Table 4.7: Example 2 � Objective values for the error minimization problem found
after 3600 seconds

Depth-based priorities
Redundant constraints Symmetry cuts Use Ignore

Use Use 2.24184 2.24327
Omit ∗0.00000 0.55022

Omit Use 0.00006 0.55022
Omit 0.00000 �

Missing entries indicate the absence of a feasible solution after 3600 seconds.

* Optimal solution found within time limit (after 893 seconds)

For these tests, we observe that using either redundancy or symmetry-breaking con-

straints is useful. A combination of these constraint classes, however, is not bene�cial.

Depth-based priorities showed improved solutions in every case. Using none of the added

constraints or priorities prolongs feasible solution detection. Symmetry-breaking cuts appear

to hinder this problem in three out of four tests.

After formulating this problem using a rigorous disjunctive model, we use a deterministic

global optimization which identi�es the exact functional form. The solution of this problem

is also certi�ed to be globally optimal and feasible. For this example, the best overall

conditions combine redundancy-elimination constraints with depth-based priorities for the

active node minimization problem. However, if we analyze the active node minimization
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problem independently, we see that tests without symmetry-breaking cuts are the best

performers.

4.4.3 Example 3

Our third test instance is a problem from Uy et al. [101],

z(x) = x3 + x2 + x.

This, seemingly simple, function has been classi�ed as a �di�cult synthetic problem� and has

been incorporated into the GP Benchmark library [71, 107]. Uy et al. reports a success rate

of about 50% for an error tolerance of 0.01 on this problem using state-of-the-art symbolic

regression implementations.

We model this function using all operators reported by Uy et al. with the exception

of trigonometric functions due to solver incompatibilities with these functional forms. The

operator and operand sets consists of o ∈ {+,−, ∗,÷, exp, log, x, cst}. We have also matched

the range, training sample size, and sample method from [101] by randomly sampling 20

points from -1 to 1 for x. We bounded each node value for n > 1 to be within ±25, used

the same root node bound criteria as the illustrative example, and allowed a maximum tree

depth of four.

The symbolic regression optimization model for this problem has 300 continuous and

120 binary variables with 9,047 constraints. The additional redundancy constraints and

symmetry-breaking cuts add 83 and 7 constraints, respectively. The inclusion of the ex-

ponential and logarithmic unary operators constitutes a mixed-integer nonlinear problem

formulation.

The �nal expression tree for the optimal case is not the expected eleven-node function

x ∗ x ∗ x + x ∗ x + x. Instead, the solution has factored out an x returning the nine-node

function x ∗ (x+ 1 + x ∗ x). The nine-node model is illustrated in Figure 4.9.

By solving the active node minimization problem, the optimal solution is found after 1241

seconds using redundancy eliminating constraints and depth-based binary variable priorities.
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Figure 4.9: Optimal expression tree for Example 3

The upper and lower objective bounds after 2000 seconds are tabulated in Table 4.8. We

observe that depth-based priorities and redundancy-eliminating constraints are bene�cial

both independently and when used in concert. The lower bound closure is improved or

increased when using both the redundancy constraints and priorities. Most notably, depth-

based priorities are necessary to �nd a feasible solution to this problem.

Since the true goal is to �nd accurate models, it may be su�cient to terminate when a

feasible solution to the node minimization problem is found. For this problem, all feasible

solutions are located between 175 and 184 seconds. In fact, the solution found at this point

is feasible an optimal; the remaining solution time is spent certifying its global optimality.

Table 4.8: Example 2 � Objective values and lower bounds for the active node
minimization problem found after 2000 seconds.

Depth-based priorities
Use Ignore

Redundant constraints Symmetry cuts [Lower bound, Best solution found]

Use Use [8, 9] [5, �]
Omit ∗[9, 9] [5, �]

Omit Use [7, 9] [5, �]
Omit [7, 9] [5, �]

Missing entries indicate the absence of a feasible solution after 2000 seconds.

* Optimal solution found within time limit (after 1241 seconds)

No optimal solution is located after 3600 seconds when solving the error minimization

problem; therefore, we list the best feasible objectives in Table 4.9. The lower bound for
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all cases is zero. Redundancy-eliminating constraints provide the best and most consistent

reduction in the objective upper bound. The most successful conditions involved the use

of both symmetry-breaking and redundancy-elimination constraints. Depth-based priorities

appear to hinder the solution of this problem.

Table 4.9: Example 3 � Objective values for the error minimization problem found
after 3600 seconds

Depth-based priorities
Redundant constraints Symmetry cuts Use Ignore

Use Use 2.07743 0.03054
Omit 1.48318 0.34040

Omit Use 7.03405 7.03405
Omit 7.03405 7.03405

Missing entries indicate the absence of a feasible solution after 3600 seconds.

Similar to Example 2, we are able to certify the global optimality of the most accurate

surrogate model. The proposed optimization formulation can be solved both rigorously and

deterministically; therefore, we eliminate stochastic concerns that result in a 50% success

rate on this problem when genetic methods are used [101]. The active node minimization

problem outperforms the error minimization problem for this example. The best conditions

for the active node minimization problem remain the use of redundancy-elimination cuts

and depth-based branching priorities. The use of symmetry and redundancy-eliminating

constraints is bene�cial for the error minimization problem.

4.5 Conclusion

Symbolic regression methods select the structure of an expression tree as well as parame-

ter values to �exibly de�ne a nonlinear surrogate model. Conventional symbolic regression

techniques use genetic algorithms to search for an optimal surrogate model. However, it has

been shown that these methods often are unable to return an accurate solution with respect

to model value mismatch and/or model form mismatch. We present a disjunctive optimiza-

tion formulation to rigorously solve the symbolic regression problem and demonstrate its
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e�cacy using a deterministic global optimization solver. The result is a symbolic regression

method that is rigorous without being hindered by stochastic components that lead to low

success rates.

We present and study solutions to a disjunctive symbolic regression formulation that

identi�es the exact modeling functional form and perfect model value matching. We �nd the

active node minimization problem to be the strongest formulation after comparing this ob-

jective to error minimization. We also explore the bene�ts of adding redundancy-eliminating

constraints imposed among a parent and its children nodes, cuts to break symmetries over

symmetric operators, and the use of binary variable priorities based on the tree-depth of

each node. The use of redundancy-constraints and depth-based priorities consistently im-

prove the active node minimization problem. The results also indicate that, most often, the

same is true for the error minimization problem; however, if poor performance is observed,

symmetry-breaking cuts may be bene�cial.
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Chapter 5

Surrogate-based optimization of

carbon capture processes

We apply surrogate modeling to address the design and optimization of post

combustion carbon dioxide capture systems. The proposed methodology com-

bines both a systems-based approach to process synthesis and high-�delity,

multi-scale process simulators for accurate representation of the chemical sys-

tems. These approaches are conventionally incompatible for rigorous, determin-

istic optimization as well as black-box optimization techniques. To overcome

these obstacles, we utilize a surrogate-based optimization approach to construct

simple, accurate, tailored surrogate models that serve as a proxy for high-�delity

simulators in a rigorous optimization framework.

In this chapter, we present a superstructure optimization strategy to design

a �owsheet model as well as reactor geometries and operating conditions for

a post combustion carbon capture process. We outline aspects of the under-

lying processes that de�ne high-�delity reactor simulators and detail surrogate

modeling techniques used to preform the surrogate-based approach. Finally,

we present surrogate modeling results that are currently used at the National

Energy Technology Laboratory for superstructure optimization.
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5.1 Introduction

Recent developments have introduced a variety of emerging technologies to capture CO2

from point sources, such as power plants. As the number of technological combinations

increases, a rapid screening process to compare best-case scenarios is necessary to identify the

most promising selections. When ranking combinations of technologies, an impartial metric

re�ecting an optimal balance of trade-o�s with respect to environmental and economic costs

is required.

To leverage a full set of process and technology trade-o�s, we use a systems-based ap-

proach to process synthesis. This approach ensures a fair screening of potential technologies

by comparing each combination at its optimal set of process parameters: temperatures,

pressures, geometries, �ow rates, etc.. In this work, we utilize a systems-based approach to

process synthesis for the design, or more speci�cally, the modi�cation of an existing power

plant. Such systematic numerical solution techniques have largely replaced intuitive, heuris-

tic, and ad hoc structure development and are widely implemented in computer modeling

systems, simulation packages, and optimization techniques [13].

This chapter uses a blend of new and traditional process synthesis techniques to enable

promising concepts to be more quickly identi�ed through rapid computational screening

of devices and processes. By integrating high �delity, multi-scale process simulations with

advanced optimization software, we aim to rapidly screen new concepts and to promote more

focused and e�ective pilot and demonstration scale projects.

Carbon capture and sequestration is one of the three primary options to reduce the total

CO2 emissions to the atmosphere [109] along with reducing energy use and switching to

non-fossil fuels. Globally, fossil-fueled power plants lead all other industries in CO2 emis-

sions, accounting for 33-40% of the total [19, 94]; therefore, the Carbon Capture Simulation

Initiative (CCSI) e�ort has focused on reducing emissions from the power industry. Carbon

capture and sequestration begins with the separation of CO2 from �ue gas. The CO2-rich

gas stream is then compressed and injected into existing geological formations. The most en-
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ergy intensive step in the process is the separation of the CO2 from the �ue gas stream [109].

By extension, this carbon capture step o�ers the most potential for improvement.

Advanced discrete optimization techniques address high-level �owsheet decisions, such

as network con�guration; reactor type selection; and number of required units. In these ad-

vanced formulations, continuous decisions representing �ow rates, temperatures, and geome-

tries are determined simultaneously. We implement a superstructure optimization approach

to select carbon capture technologies and network con�gurations. A superstructure of deci-

sions optimizes all synthesis decisions simultaneously to �nd the best embedded alternative

within the superstructure formulation [13].

Traditional superstructure optimization formulations include algebraic objectives and

constraints that relate decision variables through �rst principles models, mass and energy

balances, individual unit models, and design constraints. However, for more complicated

units and processes, these relationships may not be available in algebraic form with su�-

cient accuracy. For the units examined here, high-�delity simulations are constructed to

represent underlying chemical processes and providing access to rigorous thermodynamic

packages. Typically, these so-called black box problems are optimized using derivative-free

solvers. However, these methods lack the optimality certi�cations provided by derivative-

based solvers. Additionally, they fail to meet the �exibility requirements of superstructure

optimization for complicated systems.

To maximize the potential of our high-�delity unit simulations, we extend these super-

structure methods using the surrogate modeling software ALAMO [24] to generate a rich

set of simple algebraic models based upon empirically derived simulation data. The re-

sulting empirical models are tailored to include appropriate mathematical characteristics

that ensure consistency with numerical simulators while enabling a rigorous superstructure

formulation.

The remainder of the chapter is organized as follows. In the next section, we outline our

superstructure formulation with speci�c attention to the input/output structure of units that

are described using surrogate models. In Section 5.3, we detail the methods used to generate

surrogate models. Details of the high-�delity simulations used to represent reactor units
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and other process components are included in Section 5.4. Finally, provide computational

results generated using high-�delity simulations, surrogate modeling techniques, and process

�owsheet optimization for an industrial carbon capture system.

5.2 Superstructure formulation

In this section, we describe a superstructure formulation used to (a) minimize the total cost

including capital, operating, maintenance, utilities, and power expenses while (b) achieving

a 90% capture target. The capture target is the percentage of CO2 extracted from the

�ue gas into the CO2-rich gas stream. A general schematic representing the optimization

superstructure for a carbon capture process consisting of adsorbers and regenerators in series

as well as other associated units is depicted in Figure 5.1.

�ue gas

S

(Nu − 1)
parallel trains

H1

util in
C1

a1
cold out
cold in

a2

. . .

an

H2

lean
sorbent

cold in

CO2-lean gas

dn

compression
chain

CO2-rich gas

. . .

d2

d1
hot out
hot in

H3
rich

sorbent

warm
in

M

steam

C2

feed CO2

Figure 5.1: Superstructure carbon capture �ow diagram

Flue gas from a 650MW pulverized coal power plant is split evenly between Nu identical

carbon capture trains. For each carbon capture train, the �ue gas is cooled and compressed

using heat exchanger H1 and compressor C1. The �ue gas stream is then contacted counter-

currently with a CO2-selective sorbent using a series of adsorbers, as for stages s ∈ {ADS =

1, 2, . . . , nads}, resulting in a CO2-lean or clean gas stream and a CO2-rich sorbent stream.

The rich sorbent stream is heated using exchanger H3 before regeneration in a series of
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desorbers, ds for stages s ∈ {REG = 1, 2, . . . , nreg}, using compressed feed CO2 and steam.

Finally, the lean sorbent is cooled in exchanger H2 and recycled back into the adsorber

chain.

In order to simplify the complexity of the optimization problem, surrogate models are

used for the reactors, while �rst principle models are constructed to represent the dynamics

the compressors, C1 and C2; heat exchangers, H1, H2, and H3; splitter, S; and mixer,

M. The resulting algebraic equations can be combined to form a mixed-integer nonlinear

problem (MINLP). The objective and constraints used to describe adsorbers, regenerators,

and other associated units are detailed in the remainder of this section.

5.2.1 Objective: Cost of electricity

The goal of this optimization formulation is to select the optimal superstructure �owsheet,

unit geometries, and operating conditions that minimize the estimated increase in the cost

of electricity COE based on a 2007 650MW power plant with post combustion carbon

extraction and the primary design constraint of 90% carbon capture.

The cost of electricity is estimated using the total overnight cost TOC, �xed operation

and maintenance costs OCFIX, variable operation and maintenance costs (including fuel)

OCVAR, and annual net megawatt-hours of power MWh generated at a 100% capacity

factor CF [15]. Equation 5.1 summarizes the functional form of the optimization objective:

COE =
CCF · TOC +OCFIX + CF ·OCVAR

CF ·MWh
+ COETS&M, (5.1)

where CCF is the capital charge factor, CF is the plant capacity factor, and COETS&M is

the cost for CO2 transport, storage and monitoring. The operating costs are a function of

equipment and unit geometries and speci�cations. These include reactor depth and diameter,

the number of heat exchanger tubes and their dimensions, and the number of required reactor

stages. Transportation costs for the major stages are estimated using cost correlations

from [91] and a Lang factor is applied to obtain TOC. Fixed and variable operation and

maintenance costs are calculated using process information or as a fraction of the TOC. For
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additional information regarding the correlations and functional forms used in the estimation

of COE, we refer the reader to [76].

5.2.2 Constraint and variable descriptions

We employ several sets of integer variables to describe �owsheet decisions and de�ne chemical

process units. Discrete decisions and unit-speci�c constraints are detailed in this section.

Unless otherwise stated, mass and component mass balances are enforced over each unit,

heat exchanger areas are calculated using an estimated overall heat transfer coe�cient with a

log mean temperature driving force, and standard compression models are used to represent

vapor phases [91]. Superscript and supscripts are denote streams or units, �ow directions,

and components of a given variable or property. In all descriptions, the temperatures,

pressures, �ow rates, component molar �ow rates, and composition are denoted as T , P , F ,

C, and x or z, respectively.

Discrete decision variables

Discrete decisions involved in this super structure include: the number of parallel chains,

the number of adsorber and regenerator stages, and technology speci�cations for each stage.

The number of parallel trains, Nu, allows for the processing of large �ue gas �ow rates

despite a 10m limit on the maximum diameter of each reactor. There are a maximum

of nads adsorbers and nreg regenerators permitted in the formulation. If a stage i is used

in the �ow sheet, its corresponding binary variable yi = 1 for i ∈ ADS ∪ REG and is zero

otherwise. Each adsorber as and regenerator ds can take on one of two technologies included

in this work: bubbling �uidized beds operating in either over�ow and under�ow modes. The

following equation ensures that only one technology is used at any active stage:

∑
t∈TN

xit = yi i ∈ ADS ∪ REG. (5.2)

These technologies make up the technology set TN= {overflow, underflow}.
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Adsorbers

An individual adsorber as at stage s uses a counter current con�guration to contact gas and

sorbent material. Figure 5.4 shows the variables associated with this reactor.

Adsorber: as
Lbs, Dbs, V gs

Nxs, Dxs, lxs, AHs

P out
sg , F out

sg

T out
sg , xout

sg

zout
sc , γout

sA

T out
sA

P in
sg , F

in
sg

T in
sg , x

in
sg

zin
sc, γ

in
sA

T in
sA

Cooling water:
T in
s,c, F

in
s,c

T out
s,c

Figure 5.2: Adsorber diagram

The gas, with properties denoted by a subscript g, �ow upward while the sorbent stream,

denoted with a subscript A, �ows downward. Additionally, the reactor contains heat ex-

changer tubes, where cooling water properties are denoted with a subscript c. The adsorber

has a bed depth Lbs, a reactor diameter Dbs, a super�cial gas velocity of V gs, and Nxs heat

exchanger tubes with a diameter of Dxs and length of lxs resulting in a heat exchanger area

of AHs . The remainder of the input/output relationships are determined using surrogate

models of simulated data. The speci�cations relating properties for each technology to inlet

and geometric conditions are as follows:

Ω =
∑
t∈TN

xstΩ̂t

(
φgas,out

flue , φsorb,out
s+1 , φads

s

)
s = 1 (5.3)

Ω =
∑
t∈TN

xstΩ̂t

(
φgas,out

s−1 , φsorb,out
s+1 , φads

s

)
s ∈ ADS \ (1 ∪ nads) (5.4)

Ω =
∑
t∈TN

xstΩ̂t

(
φgas,out

s−1 , φsorb,out
d , φads

s , T out
H2

)
s = nads, d = 1 (5.5)
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where Ω is a proxy for each variable that requires a surrogate model Ω̂ including outlet

temperatures, pressures, �ow rates, and compositions as well as gas velocity, cooling water

properties, and the number of heat exchanger tubes. For conciseness, we group the input

variables into three categories: inlet gas properties, inlet sorbent properties, and unit speci�c

properties. The inlet gas variable group φgas,out
i is comprised of gas properties leaving unit i

including gas composition, xfc, fc = {CO2, H2O,N2}; pressure,P ; temperature, T ; and �ow

rate, F . The sorbent properties entering adsorber as and exiting unit i are part of variable

group φgas,out
i including zsc, sc = {HCO3, H2O,NH2COO}; sorbent fraction from the top

stage, γ; and sorbent temperature, T , as appropriate�excepting the sorbent temperature

into anads
which results from the outlet temperature from H2, T out

H2 . Unit-speci�c properties

collected in variable group φads
s include cooling water �ow rate and temperature, F in

c and

T in
c ; bed length and diameter, Lb and Db; diameter and length of heat exchanger tubes, Dx,

and lxs; and super�cial gas velocity, V g.

The area of heat change is calculated using the following formula:

AHs = πNxsDxs lxs. (5.6)

A detailed description of the technology used to accomplish gas-sorbent contacting is

provided in Section 5.4.

Regenerators

Each regenerator ds at stage s has a corresponding con�guration to adsorber as and regen-

erates sorbent material for recycle. Figure 5.3 depicts the gas and sorbent properties, heat

exchanger, and reactor geometries for the regenerator at stage s.
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Figure 5.3: Regenerator diagram

The regenerator heat exchanger utilizes steam injection for reactor heating and is de�ned

by a similar set of surrogate models:

Ω =
∑
t∈TN

xstΩ̂t

(
φgas,out

feed CO2
, φsorb,out

s+1 , φreg
s

)
s = 1 (5.7)

Ω =
∑
t∈TN

xstΩ̂t

(
φgas,out

s−1 , φsorb,out
s+1 , φreg

s

)
s ∈ REG \ (1 ∪ nreg) (5.8)

Ω =
∑
t∈TN

xstΩ̂t

(
φgas,out

s−1 , φsorb,out
a , φreg

s , T out
H3

)
s = nreg, a = 1 (5.9)

with variable grouping as detailed in the previous section. However, gas properties entering

d1 are de�ned by the steam and compressed feed CO2 stream; while, sorbent properties into

d1 are de�ned by the outlet temperature from heat exchanger H3 and remaining sorbent

properties from a1. The heat exchange area is calculated using Equation 5.6.

Flue gas heat exchanger

The �ue gas heat exchanger H1 is intended to cool the �ue gas to a temperature that is

more amenable to the process. The input/output structure of this exchanger is shown in

Figure 5.4.
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Figure 5.4: Flue gas heat exchanger diagram

The energy and hydrodynamic balances are described using existing empirical models.

The �ow rate of the cooling utility water is determined using [91]:

T out
util Futil = T out

in Futil +

40683
(

374−T out
flue

274

)0.38 (
C in

H2O − Cout
H2O

)∑
fc

cPfcC
in
fc

(
T out

flue − T in
flue

)
cPH2O

(5.10)

where cPi is the heat capacoty of component i.

5.3 Surrogate model development

To incorporate detailed simulations of the adsorber and regenerator models into the super

structure optimization framework, we require the generation of a set of algebraic surrogate

models for each reactor and �ow condition. To accomplish this, employ a software package

ALAMO (Automated Learning of Algebraic Models for Optimization). We refer the reader

to [24] for a more detailed description of these techniques.

To generate a set of surrogate models, the carbon capture reactor is simulated over a

range of likely operating and design conditions. The resulting surrogate models are combined

along with algebraic connectivity, superstructure logic, and design constraints to complete

the superstructure optimization model. This approach has seen recent advances in chemical

engineering design, where an existing modeling method is used to model components of a

system. Henao and Maravelias [43] have used neural networks to approximate individual
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process units to formulate superstructure models. Kriging models have been used by Ca-

ballero and Grossmann[18] on disaggregated systems while more recent work models the

entire process [28, 45, 79]. These models are large and complex and can oftentimes lead to

intractable �nal superstructure optimization problems. Typically, these methods focus on

developing models that are highly accurate. ALAMO develops models that are not only

accurate but are also tailored to promote optimization of the �nal superstructure model.

By considering the �nal purpose of the surrogate models, it is possible to identify functional

forms that can be easily incorporated into larger optimization models without the di�culty

of inherently complex surrogate models.

A three-step algorithm is used to identify surrogate models. After an initial design of

experiments is generated and the simulation is sampled at these points, an initial surrogate

model is generated using this data. To determine the accuracy of the surrogate, an error

maximization adaptive sampling method is used to locate new areas of model mismatch. If

the model is shown to be su�ciently accurate, the algorithm terminates. Otherwise, the

newly sampled simulation points are added to the training set and the model is rebuilt.

Both the functional form and complexity of the surrogate model, ẑk, for each output

variable zk are unknown. However, we allow for large set of potential functional forms.

ALAMO de�nes the set of simple basis functions Xj(x), j ∈ B that, when combined,

serve as a �exible underlying functional form for the surrogate model. The set of simple

basis functions B can be selected from physical principles, engineering experience, simple

inspection, or statistical �tting functions. The �nal surrogate model for zk becomes:

ẑ(x) =
∑
j∈B

βj Xj(x) (5.11)

where each basis function j is multiplied by a corresponding coe�cient or regression pa-

rameter βj . If the resulting model is comprised of every possible basis function available

to ALAMO, the surrogate model would run into the same complexity obstacles as kriging

and neural networks. Instead, a subset of basis functions is identi�ed to remain in the �nal
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surrogate. The subset is chosen to minimize over-�tting of the model as well as to retain

tractability of the �nal optimization problem.

To select the best subset model, ALAMO begins with a small number of allowed terms T .

ALAMO solves the best T subset problem minimizing linear error using the mixed-integer

linear problem (P):

(P ) min
N∑
i=1

ei

s.t. ei ≥ zi −
∑
j∈B

βj Xj(xi) i = 1, 2, . . . , N

ei ≥
∑
j∈B

βj Xj(xi)− zi i = 1, 2, . . . , N

∑
j∈B

yj = T

βlo
j yj ≤ βj ≤ β

up
j yj j ∈ B

βj ∈ [βlo
j , β

up
j ] j ∈ B

yj ∈ {0, 1} j ∈ B.

where ei is the absolute linear error between the model and the simulated data at each

point i and the simple basis function, Xj(x), j ∈ B, are active when the corresponding

binary variable yj = 1 and inactive when yj = 0. The size of the model, speci�ed by the

parameter T in �rst constraint, is increased until a goodness-of-�t measure, such as the

corrected Akaike Information Criterion [46], worsens with an increase in model size.

For this work, we include more than 1000 basis functions in the basis set. With so large

a basis set, (M) is di�cult to solve to optimality for all but small values of T . Therefore,

we use the best feasible model found after a predetermined solution time. This provides

a heuristic solution to the best subset problem. Compared to other common alternative

heuristic methods, we have seen vast improvements with this selection criteria. This is

126



because (M) is able to �nd a near optimal solution by comparing the synergistic e�ects of

all terms simultaneously without being hindered by correlated basis functions.

At this point, a traditional ALAMO application would use built-in error maximization

sampling to determine new simulation points that serve to improve the surrogate models

and de�ne a stopping criterion. However, for the purposes of this work, we use a �xed data

set.

Once the surrogate models for all process blocks are generated, they are used in con-

junction with connectivity and design constraints to formulate a superstructure optimization

problem to minimize the increased COE.

5.4 Process components

In this section, we describe the process units that will make up the superstructure formula-

tion for the solid sorbent post combustion carbon capture process.

5.4.1 Carbon capture adsorber and regenerator models

Adsorber(s) and the regenerator(s) are the two primary units in a carbon capture system.

The adsorber, or series of adsorbers, removes CO2 from the �ue gas stream through contact

with a CO2 selective sorbent. The outlet streams are the CO2-lean �ue gas stream and

CO2-rich sorbent stream this is be recycled after regeneration. The regenerator removes

CO2 from the sorbent resulting in desorbed sorbent that can be reused and a CO2 stream

that is compressed for storage.

In the context of this case study, the sorbent is an amine-impregnated, mesoporous

sorbent developed at NETL (NETL 32D). This solid sorbent consists of a mixture of

polyethyleneimine (PEI) and aminosilanes impregnated into the mesoporous structure of

a silica substrate. CO2 a�nitty is achieved through chemical reactions between the amine

sites within the sorbent and gaseous CO2. The result is a formation of solid species bound

within the sorbent. Unfortunately, it has been demonstrated that the presence of water has

a signi�cant e�ect on the equilibrium and kinetics of the CO2 adsorption because the sorbent
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also shows a strong a�nity for water [76]. Lee et al. [67] developed a lumped parameter

kinetic model for the adsorption of both CO2 and water onto this sorbent which takes into

account di�ering reaction pathways and amine site limitations.

In this study, we focus on bubbling �uidized beds (BFB) to enable gas-solid contact

over two regimes: (1) over�ow and (2) under�ow. In (1) the solid sorbent stream exits

from the top of the reactor, while in (2) the outlet solid stream is con�gured at the bottom.

Based on a screening analysis of available gas-solids contacting equipment, a detailed model

for the this �uidized bed was developed in Aspen Custom Modeler (ACM) [2]. Gas-solids

contacting equipment can be grouped into four broad categories di�erentiated by the way

that gas and solids move through the system, each with unit-speci�c trade o�s: �xed beds,

moving beds, bubbling �uidized beds, and circulating �uidized beds. Bubbling �uidized

bed reactors are used in a wide range of industrial processes, such as �uidized catalytic

cracking and combustion of biomass [76]. Also promising are moving bed reactors which

have been applied in several gas-solid contacting processes in the metallurgical, chemical,

and petroleum industries [76]. Though several other technologies seem promising, we will

limit our search to BFB reactors for the scope of this study.

The bubbling �uidized bed model used here was developed by Lee and Miller [68]. It

expands upon the hydrodynamic model of Kunii and Levenspiel [66] to develop a complete

one-dimensional model that is capable of modeling both adsorption and regeneration pro-

cesses. The model includes immersed heat exchange tubes that modify the temperature of

the solids bed and incorporate the e�ects of chemical reactions on hydrodynamics. The mod-

els were developed to capture su�cient behavioral details with the aim of providing accurate

and predictive results while remaining computational tractability. In order to satisfy these

competing requirements, one-dimensional models based on systems of partial di�erential

equations were developed. One dimensional models neglect any radial variations that occur

within the reactors due to the non-uniform distribution of gas and solids or wall e�ects;

however, the computational complexity of these models is signi�cantly decreased compared

to two- or three- dimensional computational �uid dynamics models. The systems of partial

di�erential equations used in the models addresses hydrodynamic behavior, interactions of
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the gas and solids, heat and mass transfer phenomena, and the kinetics of the adsorption

and desorption reactions.

5.4.2 Power plant model

The carbon capture process is con�gured as a post combustion addition to a 650MW super-

critical pulverized coal power plant. To power the carbon capture process, a parasitic load

is applied to the powerplant. It is this loss of steam that produces the majority non-capital

losses and, ultimately, increases in the cost of electricity discussed in Section 5.2.1. Derating

of the power plant output due to steam extraction is estimated using Equation 5.12.

net power, kW = −420.42ṁ+ 650300 (5.12)

Equation 5.12 is a correlation relating the net power output to extracted steam using

simulated data, where ṁ is the mass �ow rate of extracted 100psia steam in lb/s. Steam ex-

traction occurs at the turbine IP/LP (intermediate/ low pressure) crossover and condensate

returns to the deaerator. The power plant model, �rst created in Steam Pro [3], is exported

to Thermo�ex [4] to simulate the required modi�cations for steam extraction to power the

carbon capture process.

5.4.3 CO2 compression chain

Before the CO2 stream can be transported for sequestration, it �rst needs to be compressed.

The additional cost for this compression chain is included in the cost objective given in

Section 5.2.1. CO2 is compressed using an integral gear centrifugal compressor system�a

type of compressor commonly used for CO2 compression. Due to the relatively low speed of

sound in CO2, the pressure ratio in an integral gear compressor is approximately two. For

this work, eight compression stages are used. Intercoolers are not present after the last two

stages to avoid liquefaction of CO2. The compressor model includes a glycol drying system

capable of producing CO2 with a very low water content. An ACM compressor chain model

considers operating conditions when estimating the size, pressure ratio, and e�ciency of
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each stage. E�ciency estimates are based on mass �ow coe�cient correlations [8]. Several

constraints on compressor design and operating conditions are also incorporated in the

model [70].

5.5 Results

For each of the four reactors studied, we generate a set of sample points and use them to

identify sets of surrogate models of relevant response variables. These models are incorpo-

rated into the super structure formulation for optimization.

5.5.1 Simulation

Feasible input variable limits for all predictor variables are calculated after considering likely

process operating conditions for adsorbers and regenerators. These limits are used both to

de�ne the sample and surrogate modeling ranges and to de�ne the feasible space of the super

structure formulation. Appropriate bounds are listed in Table 5.1.

While several input variable ranges are consistent for both adsorbers and regenerators,

the majority of the operating conditions modeled separately. The most notable changes

concern inlet gas properties and sorbent compositions due the the reverse nature of each re-

actor's purpose. Geometric property ranges remain similar, as do sorbent �ow rates because

these are recycled.

A total of 400 points are selected from a Latin hypercube design of experiments using the

variable ranges provided in Table 5.1. Of the 400 points, 398, 400, 300, and 298 points were

simulated successfully with over�ow and under�ow adsorbers and over�ow and under�ow

regenerators, respectively. Sample points are generated from these simulations for each

response variable listed in Table 5.2. The response ranges for each technology and reactor

type are shown in Figure 5.5. The primary shifts between the adsorber and regenerator

cases (shown in black and red, respectively) reside in the gas CO2 composition, due to the

respective purpose of each reactor, and the resulting temperatures due, in part, to the cooling

of the absorber and heating of the regenerator. We observe a more signi�cant response in
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Table 5.1: Predictor variable descriptions and limits

Predictor Adsorber Regenerator
variable Description [min,max] [min,max]

Db Reactor diameter, m [10, 18] [8, 16]

Lb Reactor length, m [2, 8] no change

Dx Heat exchanger tube diameter, m [0.01, 0.04] no change

lx Heat exchanger tube length, m [0.05, 0.55] [0.05, 0.25]

F in
g Gas inlet �ow rate, kmol/h [4000, 9000] [1000, 3000]

T in
g Gas inlet temperature, ◦C [40, 100] [140, 170]

xin
g,CO2

Gas inlet CO2 molar composition [0.02, 0.14] [0.1, 0.4]

xin
g,H2O

∗ Gas inlet H2O molar composition [0.02, 0.14] �

P out
g Gas outlet pressure, bar [1, 1.4] [1, 1.3]

F in
A Sorbent mass �ow rate, kg/h [300000, 900000] no change

T in
A Sorbent outlet temperature, ◦C [50, 110] [130, 150]

zin
A,HCO3

Sorbent outlet HCO3 mass fraction,
kmol/kg sorbent

[0, 0.4] [0.1, 0.5]

zin
A,HN2COO

Sorbent outlet HN2COO mass
fraction, mol/kg sorbent

[0.2, 1.2] [0.8, 1.8]

zin
A,H2O

Sorbent outlet H2O mass fraction,
mol/kg sorbent

[0.2, 1.2] [0.3, 1.3]

* Not required to model regenerator simulations

the input variables and corresponding weight fractions in the adsorber compared to the

regenerator. Over�ow and under�ow conditions are depicted in Figure 5.5 with dark and

lighter bars. The most notable e�ects of this shift in �ow regime are observed in the number

of required heat exchanger tubes, �ow rate, and outlet CO2 composition. It is also worth

noting that the heat exchanger outlet temperature is robust to changes in the inputs space

for each reactor type and �ow regime. The degree of freedom required for heat exchange

is the exchanger �ow rate for all cases�even the regenerator �ow rate ranges an order of

magnitude, although this may be di�cult to discern in Figure 5.5.
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Table 5.2: Response variable descriptions and limits

Response variable Description

Nx Number of heat exchanger tubes

V g Super�cial gas velocity, m/s

P in
gas Gas inlet pressure, bar

F out
gas Gas outlet �ow rate, kmol/h

T out
gas Gas outlet temperature, ◦C

zout
gas, CO2

Gas outlet CO2 molar composition

zout
gas, H2O

∗ Gas outlet H2O molar composition

Fhx Heat exchanger outlet �ow rate, kmol/h

T out
hx Heat exchanger outlet temperature, ◦C

T out
solid Sorbent outlet temperature, ◦C

wout
solid, HCO3

Sorbent outlet HCO3 weight fraction, mol/kg sorbent

wout
solid, NH2COO

Sorbent outlet HN2COO weight fraction, mol/kg sorbent

wout
solid, H2O

Sorbent outlet H2O weight fraction, mol/kg sorbent

* Values did not require simulation or model generation for regenerator cases

Range of simulated values

number of heat exchanger tubes , [104]

super�cial gas velocity

gas inlet pressure

gas outlet �ow rate, [104]

gas outlet temperature, [102]

gas outlet CO2 fraction, [10−1]

∗gas outlet H2O fraction, [10−1]

heat exchanger �ow rate, [105]

heat exchanger outlet temperature, [102]

sorbent outlet temperature, [102]

sorbent outlet HCO3 weight fraction

sorbent outlet NH2COO weight fraction

sorbent outlet H2O weight fraction

* Values did not require simulation
for regenerator cases

over�ow adsorber
under�ow adsorber
over�ow regenerator
under�ow regenerator

minimum maximum value

Figure 5.5: Range of simulated values
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5.5.2 Surrogate models

Surrogate models are generated be the ALAMO [24] software using the 298-400 points

sampled for each �ow and reactor type. Functional forms, including monomial powers;

multinomial power; and ratios, as permitted as follows.

Monomials: xαd d = 1, 2, . . . , npred α = {±0.5,±1,±2,±3,±4}

Multinomials: (xd xd′)
α d, d′ = 1, 2, . . . , npred α = {−2,−1,−0.5, 0.5, 1, 2}

d 6= d′

Ratios:

(
xd
xd′

)α
d, d′ = 1, 2, . . . , npred α = {−2,−1,−0.5, 0.5, 1, 2}.

d 6= d′

Additionally, we include logarithmic, exponential, an constant terms in the basis set. The re-

sult is a set of potential basis functions composed of 1,071 terms for the 13-input regenerator

simulations and 1,140 for the 14-input adsorber instances.

During model generation, we solve Problem (P) for the best-T -subset of terms and allow

the number of terms, T , to increase. For larger value of T , we employ a heuristic solution

due to increasing problem complexity. We impose a solution time limit on this problem step

that may result in either an optimal solution that has not been proven globally or a strong,

yet suboptimal solution. To ensure a strong solution, we utilize forward selection to provide

an initial guess for (P). This involves choosing a T -term model by adding the best single

term to the T − 1 model as measured by the objective of (P).

During an initial screening, several outputs are more di�cult to model. For these prob-

lems, we impose a nonegativity constraint on the output variable, using the techniques

described in Chapter 3, to aid in the rapid selection of strong models. For the over�ow ad-

sorber, we impose this condition on the super�cial gas velocity, outlet gas compositions, and

sorbent weight fractions of HCO3 and water. While the under�ow regenerator do not require

these constraints, the over�ow regenerator and under�ow adsorber required the enforcement

nonnegativity bounds on the super�cial gas velocity, outlet gas compositions, and sorbent
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weight fractions of HCO3 and water. For these more challenging problems, the solution time

is also relaxed from 300 to 1000 seconds.

In Figure 5.6, we plot the normalized root mean square error between the sampled data

and surrogate model as calculate using:

Normalized error =

√√√√ 1
N

N∑
i=1

(zi − ẑ(x))2

maxi(zi)−mini(zi)
. (5.13)

In addition to quantifying model accuracy, Figure 5.6 includes the number of terms in each

response model. Using these results, we can compare several modeling outcomes in terms of

Number of termsNormalized error

no. of heat exchanger tubes

super�cial gas velocity

gas inlet pressure

gas outlet �ow rate

gas outlet temperature

gas outlet CO2 fraction

∗gas outlet H2O fraction

heat exchanger �ow rate

heat exchanger outlet temp.

sorbent outlet temp.

sorbent outlet HCO3

sorbent outlet NH2COO

sorbent outlet H2O

Note: Results with equal number of terms were separated by 0.25 for visualization
* Values did not require simulation for regenerator cases

over�ow adsorber
under�ow adsorber

over�ow regenerator
under�ow regenerator

Figure 5.6: Surrogate modeling results

both ease of modeling and model quality. For our purposes, we consider more parsimonious

surrogates easier to model. For example, inlet gas pressure is easy to model since two terms

are required for all cases. In contrast, the carbonate weight fraction in the sorbent requires

19-57 terms and is, therefore, more di�cult to model. Both of these cases, however, result
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in high quality models with only 1.1-2.5% normalized error. In contrast, the heat exchanger

outlet temperature, which only required 2-5 terms, results in models with a normalized

error of up to 5.5%. This is because, as discussed previously, the magnitude of the data

range for the heat exchanger outlet temperature is very small and, consequently, relatively

insigni�cant root mean squared errors (RMSE) are in�ated deceptively after normalization.

Table 5.3 provides a summary of resulting normalized errors and model sizes for each

�ow and reactor type. For all generated models, we �nd a normalized error in the range

0.00319-10.3% and a model size of 2-57 terms, or 0.171-5.14% of the potential basis set size.

Table 5.3: Summary of surrogate modeling results

Normalized error, Number of terms,
Reactor type Flow regime [%] [% of original terms]

Adsorber over�ow 2.5± 0.4 2.0± 0.3
under�ow 3.2± 0.6 2.0± 0.3

Regenerator over�ow 1.8± 0.2 2.4± 0.3
under�ow 3.2± 0.3 1.6± 0.2

For illustration, consider one of the smaller model sets: inlet gas pressure, P in
g . The

four generated models are listed with the sampled ranges and RMSE in Table 5.4. All

Table 5.4: Inlet pressure models

Error,

Flow regime Range of P in
g RMSE Model, P̂ in

g

Adsorbers:

Over�ow [1.0784,1.5762] 0.00791 0.5217 exp(P out
g /1.4) + 0.016063LbP out

g

Under�ow [1.0786,1.5763] 0.00791 0.5216 exp(P out
g /1.4) + 0.016096LbP out

g

Regenerators:

Over�ow [1.0996,1.4781] 0.00440 0.4852 exp(P out
g /1.4) + 0.018412LbP out

g

Under�ow [1.0995,1.4783] 0.00451 0.4851 exp(P out
g /1.4) + 0.018346LbP out

g

four models have the same functional form and modeling errors less than 0.00791 or 1.59%

normalized error. In each case, the subset selection methods in ALAMO model inlet pressure

as a function of only the outlet pressure and the bed depth by reducing the input space to
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two dimensions from 13 and 14. Furthermore, we can conclude that the pressure responses

for both adsorber �ow regimes are very similar because the sampled data ranges di�er by

less than 0.02% and the modeling coe�cients di�er by less than 0.3%. A similar case can

be made for the regenerator �ow regimes, with range and coe�cient di�erences within 0.02

and 0.4%.

Moreover, we can infer that the behavior of the inlet pressure for the adsorber and

regnerator is, in fact, di�erent as evidenced by a noticeable shift in model coe�cients. Over

the regenerator ranges of Lb and P out
g (the more restricted of the two pairs of ranges), the

inlet pressure is always greater in the adsorber than the regenerator. These important details

are not readily observed in the original 13- to 14-dimensional problem space and may not

be obvious upon initial inspection of the variable ranges.

A superstructure optimization formulation, composed of the surrogate-based models

introduced in this chapter, is used by the National Energy Technology Laboratory (NETL)

as part of the CCSI. CCSI was initiated in 2010 to develop and deploy stage-of-the-art

simulation, modeling, and optimization tools with the aim of accelerating the development

of carbon capture technology [76]. The core goals of the CCSI group are to (1) identify

promising concepts more quickly through a rapid computational screening of devices and

processes; (2) reduce the time required to design and troubleshoot new devices and processes;

(3) quantify the technical risk in taking technology from laboratory-scale to commercial-

scale; and (4) stabilize deployment costs by replacing some physical operational testing with

virtual power plant simulations. Models developed through our work play a critical role in

enabling goal (1), where this supertructure and sets of surrogate models are used to identify,

compare, and design promising combinations of carbon capture technologies.

5.6 Conclusion

The use of surrogate models in a super structure formulation enables the simultaneous and

e�cient screening of several carbon capture technology alternatives. By generating tailored

surrogate models using ALAMO, we bene�t from the increased accuracy of high �delity sim-
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ulations while leveraging advanced discrete optimization solvers. As a result, we enable the

comparison of best-case scenarios using accurate representations of process trends. In this

chapter, we outline a superstructure formulation used to design industrial carbon capture

networks. Moreover, we demonstrate the e�ective comparison and screening of alterna-

tive technologies a�orded by the proposed modeling techniques and detail methodologies to

simulate and model the underlying processes.

We conclude that generating tailored algebraic surrogate models of black-box processes

o�ers a strong balance between optimization rigor and simulation �delity.
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Chapter 6

Concluding remarks

6.1 Summary of work

In this section, we summarize the main contributions and accomplishments of this thesis.

Learning surrogate models for simulation-based optimization

In Chapter 2, we focus on a methodology to solve problems using high-�delity simulators

by identifying a set of surrogate models that are tailored for algebraic optimization. We

present a novel algorithm for surrogate model development. Surrogate models are identi�ed

using an integer optimization approach to best subset selection given a large set of poten-

tial basis functions. Surrogate models are iteratively interrogated and improved using an

adaptive sampling routine: error maximization sampling. The resulting surrogate models

are incorporated into a rigorous optimization framework to enable the e�cient discovery of

optimal solutions.

We �nd that the proposed algorithms are superior to common machine learning methods

in three desired categories: accuracy, parsimony, and e�ciency. Improvements test error,

model size, and data set size are demonstrated through computational experiments. Finally,

the e�cacy of integrating the resulting surrogate models into an optimization framework

is demonstrated on a real world simulation problem. We conclude that the simple models

138



generated using the proposed method for surrogate-based optimization enable a practical

and e�ective combination of high �delity simulators and rigorous optimization routines.

Constraining regression problems in the predictor and response variable

domains

In Chapter 3, we extend data-driven regression methods to incorporate a priori theory-based

knowledge. We introduce a class of constraints derived from predictor and response rela-

tionships that can be generally incorporated into regression problems. By restricting the

regression problem using constraints from �rst principles and intuition, we simultaneously

increase the accuracy and physical feasibility of the resulting surrogate models. The under-

lying knowledge for these constraints is based upon intuitive bounds on response outputs,

thermodynamic limitations, ensuring the consistency of numerical properties, and ubiquitous

boundary conditions on di�erential systems.

We propose a set of semi-in�nite constraints to enforce these conditions during regres-

sion modeling. These constraints are used to reveal nonintuitive relationships within the

regression parameter set to strengthen regression models through increased accuracy, more

reliable extrapolation, and physical realizability. We describe several sources and demon-

strate several classes of regression restrictions using illustrative examples and computational

studies.

A global optimization approach to symbolic regression

In Chapter 4, we expand upon the freedom of nonlinear functional forms introduced in

Chapter 2 by exploring a global optimization formulation to solve the symbolic regression

problem. We propose a disjunctive optimization formulation to locate and certify global

solutions to the symbolic regression problem. By employing a rigorous, deterministic opti-

mization solver, we improve the success rate over current state-of-the-art symbolic regression

methods that utilize genetic algorithms and adaptive programming techniques to search for

this structure. Our symbolic regression implementation discovers and certi�es global solu-

tions that exactly match the model form and all model values.
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In addition to a baseline optimization formulation, we propose several improvements to

the formulation: redundancy eliminating constraints, symmetry breaking cuts, and depth-

based binary variable priorities. We also compare active node minimization and error min-

imization. The best performance was observed when solving the active node minimization

problem formulated using redundancy eliminating constraints imposed among a parent and

its children nodes and binary variable priorities based on the tree-depth of each node.

Surrogate-based optimization of carbon capture processes

In Chapter 5, we apply techniques introduced in previous chapters to design and optimize

post combustion carbon dioxide capture systems. As a result, we employ both a systems-

based approach to process synthesis for optimal design and high-�delity process simulators

that provide an accurate representation of the chemical processes. Surrogate-based opti-

mization combines the modeling methods introduced in previous chapters with a rigorous

superstructure optimization formulation.

We outline the components of the superstructure, describe the details of the simulator

models, and outline the surrogate modeling methods employed. Lastly, we present results

from these methods which are currently used at the National Energy Technology Laboratory

to compare and design industrial carbon capture systems.

6.2 Contributions

The major contributions of this thesis are summarized as follows:

Learning surrogate models

• We have developed a novel algorithm for the black-box surrogate modeling of high-

�delity models for incorporation into optimization problems.

• We have automated surrogate model builder to generate large sets of potential basis

functions and select the best subset using a mixed-integer optimization problem.
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• We proposed an adaptive sampling approach that expands on current methods, that

use surrogate model uncertainty metrics to select points, to search the problem space

for areas of model mismatch for an arbitrary surrogate model form.

• We establish model accuracy and simplicity as well as modeling e�ciency, with respect

to data sampling, through computational studies.

• The e�cacy of proposed methodology is demonstrated using an optimization frame-

work on a carbon capture case study.

Constrained regression

• We developed a general constrained regression formulation that enforces relationships

among predictor and response variables for regression problems with arbitrary func-

tional forms.

• A family of constraints is listed that can be used to enforce physical limitations and

a priori knowledge on regression problems.

• We demonstrate an implementation of these methods to increase the accuracy, physical

realizability, and extrapolation potential of regression models using several illustrative

examples and computational experiments.

Rigorous symbolic regression

• We formulate a rigorous optimization model to �nd global, certi�able solutions to the

symbolic regression problem.

• We list improvements to the formulation including alternate objectives, redundancy

eliminating constraints, symmetry-breaking cuts, and depth-based binary variable pri-

orities.

• The e�cacy of this formulation is demonstrated on several examples from the symbolic

regression literature.
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Optimization of carbon capture processes

• We outline a superstructure formulation that uses a surrogate-based approach to

screen carbon capture technologies for the design of a post combustion carbon capture

process.

• We detail surrogate modeling results and a superstructure optimization framework

that is currently in use at the National Energy Technology Laboratory for optimization

and design.

6.3 Future work

In this section, we outline interesting areas for future research.

Model form identi�cation

In Chapter 2, we use a set of predetermined basis functions to serve as a �exible underlying

functional form for the surrogate model. Alternatively, in Chapter 4, we consider a more

�exible de�nition of the nonlinear functional form that comprises a surrogate model. We

expect there is great potential in the combination of these two methods.

The subset regression methods of Chapter 2 provide strong models that can be updated

using symbolic regression. The subset regression surrogate models would make strong start-

ing points for the symbolic regression problem. Additional information from the subset

regression models can be used to help better bound the variables of the symbolic regression

problem.

Symbolic regression may be used to enrich the basis set used in subset regression. Promis-

ing terms found using symbolic regression could be used to seed the subset regression prob-

lem. Furthermore, symbolic regression can aid in closing the gap between the underlying

function and the �nal subset regression model.
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Best subset regression

The ALAMO implementation described in Chapter 2 involves the solution of the best subset

problem and error maximization sampling. However, the majority of the algorithmic time,

that is not devoted to solving simulations, is dedicated to solving the best subset regression

problem. The optimization approach to this problem is signi�cantly faster and scales more

favorably than the enumerative alternative, yet there is still room for improvement.

The current best subset problem is solved by parameterizing with respect to the number

of terms allowed in the model. A closer examination of the bene�ts of simultaneously solving

for the model size and model form could provide desirable solution time improvements. Ad-

ditionally, research into cardinality constrained mixed-integer problems may yield promising

formulations.

Alternate sampling methods

We propose an error maximization sampling technique in Chapter 2 to perform an iterative

design of experiments aimed at locating areas in the surrogate model with high model

mismatch. This method is the primary source of empirical data for the surrogate modeling

problem. Then in Chapter 3, we introduce the constrained regression methods that allow

for the inclusion of theory-based information into the empirical models. These methods

are both aimed at improving a surrogate model by introducing strong information to the

modeling problem. However, the two methods work independently.

During the solution of the constrained regression problem, we locate regions in the

surrogate model that violate prespeci�ed physical limits: regressors bounds, nonconvexities,

thermodynamic limits, etc.. Often, these violated areas are also weakly represented regions

of the surrogate model. An exploration into the incorporation of data from this region for

error maximization sampling may prove interesting. It may also prove useful to investigate

other �xed and iterative sampling methods.
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Certi�ed surrogate-based optimization results

The surrogate-based optimization approach discussed in Chapters 2 and 5 involves the (1)

surrogate modeling of any black-box aspects of the optimization problem, (2) the incorpora-

tion and optimization of an algebraic optimization problem using surrogate models as proxy

for black-box segments, and (3) the veri�cation of the solution. In this thesis, we focus

on steps (1) and (2). In Chapter 2, we verify the pareto curve of the case study through

repeated simulation sampling. However, this method is not always reliable and may be

computationally costly.

Sensitivity analyses can be implemented to provide estimates of �rst- and second-

derivative values by repeated sampling of the simulation. Additionally, trust region

methods can be used to guarantees convergence to the original optimization problem,

provided that we accept moderate assumptions on the surrogate model and sampling

data [14]. We expect these methods can provide a stronger alternative to (3).

144



Bibliography

[1] NETL Power Systems Financial Model Version 5.0. Available at http:

//www.netl.doe.gov/business/solicitations/ssc2008/references/PSFM%

20User%20Guide.pdf, 2008.

[2] Aspen Custom Modeler, April 2014. https://www.aspentech.com/products/

aspen-custom-modeler.aspx.

[3] Conventional steam cycle design program to create cycle heat balance and phys-
ical equipment needed to realize it, April 2014. http://www.thermoflow.com/

convsteamcycle_STP.html.

[4] Fully-�exible design and simulation of conventional steam plants, combined cy-
cles, and other thermal power systems, April 2014. http://www.thermoflow.com/

convsteamcycle_TFX.html.

[5] H. Akaike. A new look at the statistical model identi�cation. Automatic Control,

IEEE Transactions on, 19:716�723, 1974.

[6] A. C. Antoulas, D. C. Sorensen, and S. Gugercin. A survey of model reduction methods
for large-scale systems. Contemporary Mathematics, 280:193�218, 2001.

[7] J. April, F. Glover, J. P. Kelly, and M. Laguna. Practical introduction to simula-
tion optimization. In Simulation Conference, 2003. Proceedings of the 2003 Winter,
volume 1, pages 71�78, 2003.

[8] R. H. Aungier. Centrifugal compressors: a strategy for aerodynamic design and anal-
ysis. Technical report, ASME Press, 2000.

[9] P. Balasubramaniam and A. V. A. Kumar. Solution of matrix Riccati di�erential equa-
tion for nonlinear singular system using genetic programming. Genetic Programming
and Evolvable Machines, 10(1):71�89, 2008.

[10] Y. Bard. Nonlinear Parameter Estimation. Academic Press, 1974.

[11] K. D. Bettenhausen, P. Marenbach, S. Freyer, H. Rettenmaier, and U. Nieken. Self-
organizing structured modelling of a biotechnological fed-batch fermentation by means
of genetic programming. In Genetic Algorithms in Engineering Systems: Innovations

and Applications, 1995. GALESIA. First International Conference on (Conf. Publ.

No. 414), pages 481�486, 1995.

145

http://www.netl.doe.gov/business/solicitations/ssc2008/references/PSFM%20User%20Guide.pdf 
http://www.netl.doe.gov/business/solicitations/ssc2008/references/PSFM%20User%20Guide.pdf 
http://www.netl.doe.gov/business/solicitations/ssc2008/references/PSFM%20User%20Guide.pdf 
https://www.aspentech.com/products/aspen-custom-modeler.aspx
https://www.aspentech.com/products/aspen-custom-modeler.aspx
http://www.thermoflow.com/convsteamcycle_STP.html
http://www.thermoflow.com/convsteamcycle_STP.html
http://www.thermoflow.com/convsteamcycle_TFX.html
http://www.thermoflow.com/convsteamcycle_TFX.html


[12] L. T. Biegler, I. E. Grossmann, and A. W. Westerberg. A note on approximation
techniques used for process optimization. Computers & Chemical Engineering, 9:201�
206, 1985.

[13] L. T. Biegler, I. E. Grossmann, and A. W. Westerberg. Systematic Methods for Chem-

ical Process Design. Prentice Hall, 1997.

[14] L. T. Biegler, Y. Lang, and W. Lin. Multi-scale optimization for process systems
engineering. Computers & Chemical Engineering, 60:17�30, 2014.

[15] J. B. Black, J. L. Haslbeck, A. P. Jones, W. L. Lundberg, and V. Shah. Cost and
performance of PC and IGCC Plants for a range of carbon dioxide capture. Technical
report, DOE/NETL, 2011.

[16] G. E. P. Box, J. S. Hunter, and W. G. Hunter. Statistics for experimenters: Design,
Innovation, and Discovery, 2nd Edition. Wiley, 2005.

[17] K. P. Burnham and D. R. Anderson. Model Selection and Multimodel Inference: A

Practical Information-Theoretic Approach. Springer, 2002.

[18] J. Caballero and I. E. Grossmann. An algorithm for the use of surrogate models in
modular �owsheet optimization. AIChE Journal, 54:2633�2650, 2008.

[19] R. Carapellucci and A. Milazzo. Membrane systems for CO2 capture and their in-
tegration with gas turbine plants. In Proceedings of the Institution of Mechanical

Engineers, Part A: Journal of Power and Energy, volume 217, pages 505�517. SAGE
Publications, 2003.

[20] S.-H. Chen. Genetic Algorithms and Genetic Programming in Computational Finance.
Springer, 2002.

[21] W. Chen, Z. Shao, and J. Qian. Interfacing IPOPT with ASPEN open solvers and
CAPE-OPEN. In 10th International Symposium on Process Systems Engineering:

Part A, volume 27, pages 201�206. Elsevier, 2009.

[22] A. R. Conn, K. Scheinberg, and L. N. Vicente. Geometry of interpolation sets in
derivative-free optimization. Mathematical Programming, 111:141�172, 2008.

[23] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Opti-

mization. Society for Industrial and Applied Mathematics, 2009.

[24] A. Cozad, N. V. Sahinidis, and D. C. Miller. Learning surrogate models for simulation-
based optimization. AIChE Journal, 2014. doi: 10.1002/aic.14418, 2014.

[25] N. Cressie. Spatial prediction and ordinary kriging. Mathematical Geology, 20:405�421,
1988.

[26] K. Crombecq, E. Laermans, and T. Dhaene. E�cient space-�lling and non-collapsing
sequential design strategies for simulation-based modeling. European Journal of Op-

erational Research, 214:683�696, 2011.

146



[27] K. Crombecq, L. D. Tommasi, D. Gorissen, and T. Dhaene. A Novel Sequential Design
Strategy for Global Surrogate Modeling. In Winter Simulation Conference, volume 1,
pages 731�742, 2009.

[28] E. Davis and M. Ierapetritou. A kriging method for the solution of nonlinear programs
with black-box functions. AIChE Journal, 53:2001�2012, 2007.

[29] A. Drud, ARKI Consulting and Development. CONOPT 3 Solver Manual. Available
at http://www.gams.com/dd/docs/solvers/conopt.pdf, 2003.

[30] L. B. Evans, J. F. Boston, H. I. Britt, P. W. Gallier, P. K. Gupta, B. Joseph, V. Ma-
halec, E. Ng, W. D. Seider, and H. Yagi. ASPEN: An advanced system for process
engineering. Computers & Chemical Engineering, 3:319�327, 1979.

[31] K. T. Fang and D. K. J. Lin. Uniform experimental designs and their applications in
industry. Handbook of Statistics, 22:131�170, 2003.

[32] M. C. Fu. Optimization for simulation: Theory vs. practice. INFORMS Journal on

Computing, 14:192�215, 2002.

[33] M. C. Fu, F. W. Glover, and J. April. Simulation optimization: A review, new
developments, and applications. In Simulation Conference, 2005 Proceedings of the

Winter, page 13, 2005.

[34] C. Gatu and E. J. Kontoghiorghes. Parallel algorithms for computing all possible
subset regression models using the QR decomposition. Parallel Computing, 29:505�
521, 2003.

[35] C. Gatu, P. I. Yanev, and E. J. Kontoghiorghes. A graph approach to generate all
possible regression submodels. Computational Statistics, 52:799�815, 2007.

[36] J.D. Geest, T. Dhaene, N. Fach, and D. D. Zutter. Adaptive CAD-model building
algorithm for general planar microwave structures. IEEE Transactions on Microwave

Theory and Techniques. Special Issue on Multilayer Microwave Circuits, 9:1801�1809,
1999.

[37] D. I. Gibbons and G. C. McDonald. Constrained regression estimates of technology
e�ects on fuel economy. Journal of quality technology, 31:235�245, 1999.

[38] P. E. Gill, W. Murray, and M. A. Saunders. User's Guide for SNOPT Ver-
sion 7: Software for large-scale nonlinear programming. Available at http://www.

sbsi-sol-optimize.com/manuals/SNOPT%20Manual.pdf, 2008.

[39] M. A. Goberna and M. A. López. Linear semi-in�nite programming theory: An
updated survey. European Journal of Operational Research, 143:390�405, 2002.

[40] D. Gorissen, K. Crombecq, I. Couckuyt, T. Dhaene, and P. Demeester. A surro-
gate modeling and adaptive sampling toolbox for computer based design. Journal of
Machine Learning Research, 11:2051�2055, 2010.

[41] I. E. Grossmann. Review of nonlinear mixed-integer and disjunctive programming
techniques. Optimization and Engineering, 3:227�252, 2002.

147

http://www.gams.com/dd/docs/solvers/conopt.pdf
http://www.sbsi-sol-optimize.com/manuals/SNOPT%20Manual.pdf
http://www.sbsi-sol-optimize.com/manuals/SNOPT%20Manual.pdf


[42] M. Hassoun. Fundamentals of Arti�cial Neural Networks. MIT Press, Cambridge,
MA, 1995.

[43] C. A. Henao and C. T. Maravelias. Surrogate-based superstructure optimization
framework. AIChE Journal, 57:1216�1232, 2011.

[44] R. Hettich and K. O. Kortanek. Semi-in�nite programming: theory, methods, and
applications. SIAM Review, 35:380�429, 1993.

[45] D. Huang, T. Allen, W. Notz, and N. Zeng. Global optimization of stochastic black-box
systems via sequential kriging meta-models. Journal of Global Optimization, 34:441�
466, 2006.

[46] C. M. Hurvich and C. L. Tsai. A corrected Akaike information criterion for vector
autoregressive model selection. Journal of Time Series Analysis, 14:271�279, 1993.

[47] W. Huyer and A. Neumaier. SNOBFIT�Stable Noisy Optimization by Branch and
Fit. ACM Transactions on Mathematical Software, 35, 2008.

[48] F. John. Extremum Problems with Inequalities as Subsidiary Condition. In Studies

and Essays, Courant Anniversary Volume, pages 187�204. Interscience, 1948.

[49] D. R. Jones. A taxonomy of global optimization methods based on response surfaces.
Journal of Global Optimization, 21:345�383, 2001.

[50] D. R. Jones, M. Schonlau, and W. J. Welch. E�cient global optimization of expensive
black-box functions. Journal of Global Optimization, 13:455�492, 1998.

[51] G. G. Judge and T. Takayama. Inequality restrictions in regression analysis. Journal
of the American Statistical Association, 61:166�181, 1966.

[52] M. A. Keane, J. R. Koza, and J. P. Rice. Finding an impulse response function
using genetic programming. In American Control Conference, IEEE, volume 1, pages
2345�2350, 1993.

[53] M. Keijzer. Improving symbolic regression with interval arithmetic and linear scaling.
In Genetic Programming, pages 70�82. Springer, 2003.

[54] J. K. Kishore, L. M. Patnaik, V. Mani, and V. K. Agrawal. Application of genetic pro-
gramming for multicategory pattern classi�cation. Evolutionary Computation, IEEE

Transactions on, 4(3):242�258, 2000.

[55] P. S. Knopov and A. S. Korkhin. Regression Analysis Under A Priori Parameter

Restrictions. Springer, 2011.

[56] A. S. Korkhin. Certain properties of the estimates of the regression parameters under
a priori constraint-inequalities. Cybernetics, 21:858�870, 1985.

[57] A. S. Korkhin. Parameter estimation accuracy for nonlinear regression with nonlinear
constraints. Cybernetics and Systems Analysis, 34:663�672, 1998.

148



[58] A. S. Korkhin. Solution of problems of the nonlinear least-squares method with non-
linear constraints. Journal of Automatization and Informatic Sciences, 6:110�120,
1999.

[59] A. S. Korkhin. Estimation accuracy of linear regression parameters with regard to
inequality constraints based on a truncated matrix of mean square errors of parameter
estimates. Cybernetics and Systems Analysis, 38:900�903, 2002.

[60] A. S. Korkhin. Determining sample characteristics and their asymptotic linear re-
gression properties estimated using inequality constraints. Cybernetics and Systems

Analysis, 41:445�456, 2005.

[61] A. S. Korkhin. Using a priori information in regression analysis. Cybernetics and

Systems Analysis, 91:41�54, 2013.

[62] M. F. Korns. Accuracy in Symbolic Regression. In Genetic Programming Theory and

Practice IX, pages 129�151. Springer, 2011.

[63] J. R. Koza. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press, 1992.

[64] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
Press, 1994.

[65] D. G. Krige. A statistical approach to some mine valuations and allied problems at
the Witwatersrand. Masters Thesis, University of Witwatersrand,South Africa, 1951.

[66] D. Kunii and O. Levenspiel. Fluidization Engineering. 1991.

[67] A. Lee, D. Mebane, D. J. Fauth, and D. C. Miller. A Model for the Adsorption Kinetics
of CO2 on Amine-Impregnated Mesoporous Sorbents in the Presence of Water. In 28th
International Pittsburgh Coal Conference, volume 1, 2011.

[68] A. Lee and D. C. Miller. A one-dimensional, three region model for a bubbling �uidised
bed adsorber. Ind. Eng. Chem. Res., 52:469�484, 2013.

[69] C. K. Liew. Inequality constrained least-squares estimation. Journal of the American
Statistical Association, 71:746�751, 1976.

[70] K. H. Lüdtke. Process Centrifugal Compressors: Basics, Function, Operation, Design,
Application. 2004.

[71] J. McDermott, U.-M. O'Reilly, S. Luke, and D. White. Problem classi�cation, April
2014. http://www.gpbenchmarks.org/wiki/.

[72] B. McKay, M. Willis, and G. Barton. Steady-state modelling of chemical process
systems using genetic programming. Computers & Chemical Engineering, 21:981�996,
1997.

[73] B. McKay, M. Willis, D. Searson, and G. Montague. Non-linear continuum regression
using genetic programming. GECCO, 2:1106�1111, 1999.

149

http://www.gpbenchmarks.org/wiki/


[74] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21:239�245, 1979.

[75] A. D. McQuarrie and C. L. Tsai. Regression and Time Series Model Selection. World
Scienti�c Publishing Company, 1998.

[76] D. C. Miller, N. V. Sahinidis, A. Cozad, A. Lee, H. Kim, J. Morinelly, J. Eslick, and
Z. Yuan. Computational Tools for Accelerating Carbon Capture Process Develop-
ment. In The 38th International Technical Conference on Clean Coal & Fuel Systems,
volume 1, 2013.

[77] D. C. Montgomery, E. A. Peck, and G. G. Vining. Introduction to Linear Regression

Analysis. Wiley, 2012.

[78] A. Neumaier. MINQ�General de�nite and bound constrained inde�nite quadratic
programming. Available at http://www.mat.univie.ac.at/~neum/software/minq/,
1998.

[79] K. Palmer and M. Real�. Metamodeling approach to optimization of steady-state
�owsheet simulations: Model generation. Chemical Engineering Research and Design,
80:760�772, 2002.

[80] C. C. Pantelides. SpeedUp�recent advances in process simulation. Computers &

Chemical Engineering, 12:745�755, 1988.

[81] F. Provost, D. Jensen, and T. Oats. E�cient progressive sampling. In Proceedings of

the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, volume 1, pages 23�32, 1999.

[82] F. Pukelsheim. Optimal Design of Experiments. Society for Industrial and Applied
Mathematics, 2006.

[83] C. R. Rao. Linear Statistical Inference and Its Applications. Wiley, 1965.

[84] R. Reemtsen and S. Görner. Numerical Methods for Semi-In�nite Programming: A
Survey. In R. Reemtsen and J. J. Rückmann, editors, Semi-In�nite Programming,
volume 25 of Nonconvex Optimization and Its Applications, pages 195�275. Springer
US, 1998.

[85] R. Reemtsen and J. J. Rückmann. Numerical Methods for Semi-In�nite Programming:

A Survey. Springer, 1998.

[86] G. Rezk. Inequality restrictions in regression analysis. Journal of Development Eco-
nomics, 71:746�751, 1976.

[87] L. M. Rios and N. V. Sahinidis. Derivative-free optimization: A review of algorithms
and comparison of software implementations. Journal of Global Optimization, 56:1247�
1293, 2013.

[88] N. V. Sahinidis. BARON, User's Manual. Available at http://www.gams.com/dd/

docs/solvers/baron.pdf, 2014.

150

http://www.mat.univie.ac.at/~neum/software/minq/
http://www.gams.com/dd/docs/solvers/baron.pdf
http://www.gams.com/dd/docs/solvers/baron.pdf


[89] M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data.
Science, 324:81�85, 2009.

[90] J. D. Seader, W. D. Seider, A. C. Pauls, and R. R. Hughes. FLOWTRAN simulation:

An introduction. CACHE, 1977.

[91] W. D. Seider, J. D. Seader, D. R. Lewin, and S. Widagdo. Product and Process

Design Principles: Synthesis, Analysis and Design. 3rd Ed. Wiley, 2008.

[92] T. W. Simpson, J. Peplinski, P. N. Koch, and J. K. Allen. Metamodels for computer-
based engineering design: Survey and recommendations. Engineering with Computers,
17:129�150, 2001.

[93] G. F. Smits and M. Kotanchek. Pareto-front exploitation in symbolic regression. In
Genetic programming theory and practice II, pages 283�299. Springer, 2005.

[94] C. Stewart and M.-A. Hessami. A study of methods of carbon dioxide capture and
sequestration�-the sustainability of a photosynthetic bioreactor approach. Energy

Conversion and Management, 46:403�420, 2005.

[95] P. Stoica and Y. Selén. Model-order selection: A review of information criterion rules.
IEEE Signal Processing Magazine, 21:36�47, 2004.

[96] M. Tawarmalani and N. V. Sahinidis. A polyhedral branch-and-cut approach to global
optimization. Mathematical Programming, 103:225�249, 2005.

[97] M. Thompson. Some results on the statistical properties of an inequality constraints
least squares estimator in a linear model with two regressors. Journal of Econometrics,
19:215�231, 1982.

[98] S. K. Thompson. Sampling. John Wiley & Sons, Inc., 2002.

[99] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58:267�288, 1996.

[100] R. Turton, R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz. Modeling and Simulation

in Chemical Engineering. Pearson Education, 2008.

[101] N. Q. Uy, N. X. Hoai, M. O'Neill, R. I. McKay, and E. Galván-López. Semantically-
based crossover in genetic programming: application to real-valued symbolic regres-
sion. Genetic Programming and Evolvable Machines, 12:91�119, 2011.

[102] S. Vigerske. SCIP, User's Manual. Available at http://scip.zib.de/doc/html/

index.shtml, 2014.

[103] J. Von zur Gathen and M. Sieveking. A bound on solutions of linear integer equalities
and inequalities. Proceedings of the American Mathematical Society, 72:155�158, 1978.

[104] A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point
�lter line search algorithm for large-scale nonlinear programming. Mathematical Pro-

gramming, 106:25�57, 2006.

151

http://scip.zib.de/doc/html/index.shtml
http://scip.zib.de/doc/html/index.shtml


[105] G. G. Wang and S. Shan. Review of metamodeling techniques in support of engineering
design optimization. Journal of Mechanical Design, 129:370�380, 2007.

[106] A. H. Watson and I. C. Parmee. Identi�cation of �uid systems using genetic program-
ming. In Proceedings of the Second Online Workshop on Evolutionary Computation,
pages 45�48, 1996.

[107] D. R. White, J. McDermott, M. Castelli, L. Manzoni, B. W. Goldman, G. Kronberger,
W. Ja±kowski, U.-M. O'Reilly, and S. Luke. Better GP benchmarks: community survey
results and proposals. Genetic Programming and Evolvable Machines, 14:3�29, 2013.

[108] M. J. Willis, H. G. Hiden, P. Marenbach, B. McKay, and G. A. Montague. Genetic
programming: An introduction and survey of applications. In IEEE Conference Pub-

lications, volume 1, pages 314�319, 1997.

[109] H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, Bland A. E, and I. Wright. Progress
in carbon dioxide separation and capture: A review. Journal of Environmental Sci-

ences, 20:14�27, 2008.

[110] S. �Zakovi¢ and B. Rustem. Semi-in�nite programming and applications to minimax
problems. Annals of Operations Research, 124:81�110, 2002.

152


	Alison Cozad PHD title page with typed signatures
	THESIS


