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Build a model of output variables 𝒛 as a function of 

input variables x over a specified interval

LEARNING Problem

Independent 

variables:
Operating conditions, inlet 

flow properties, unit 

geometry

Dependent variables:
Efficiency,  outlet flow 

conditions, conversions, heat 

flow, etc.

Process simulation or 

Experiment

𝑥 ∈ ℝ𝑘

𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢

𝑥1
𝑥2
⋮
𝑥𝑗
⋮
𝑥𝑘

𝑧1
𝑧2
⋮
𝑧𝑙
⋮
𝑧𝑚

𝑧 ∈ ℝ𝑚

𝑧 = 𝑓(𝑥)



3

• Functional forms specified a priori

– Multiple linear regression

Model selection can compare functional forms, linear in 

coefficients

– Nonlinear regression

Function is nonlinear in terms of regression variable

PARAMETRIC REGRESSION
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SYMBOLIC REGRESSION

• Flexible nonlinear regression

– Symbolic regression

Offers a source of nonlinear forms given only a set of operators 

addition, subtraction, multiplication, division, etc.

– General linear models

Functional forms generated can be added to larger linear 

models
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• Representation of nonlinear functional form

– Can define any function using an appropriate tree

Recursively defines the order of operations in a function using 

operands at leaf nodes and operators for all other nodes

• Small changes drastically alter function

÷

+

EXPRESSION TREES
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GENETIC PROGRAMMING

• Functional form learned without explicit 

instructions
– Symbolic regression thought of as an application of genetic 

programming [Koza, 1992]

– Stochastic nature offers no guarantees of an optimal model

• Genetic algorithms are typically used to adjust 

and improve expression trees

Initial population Mate promising individuals Form new generation
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• Disjunctions modeled with binary variables {𝒚𝒏
𝑶}

– Nodes indexed by n

– Sets of operators used as basis

for logical constraints

• Value at each node 𝒗𝒊,𝒏

– Associated upper and lower bounds

• Function value at root node

– Dependent on binary variables

– Models constants and variables

EXPRESSION TREE NOTATION
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RIGOROUS SYMBOLIC REGRESSION

• Benefits of the rigorous formulation include

– Certification of the globally optimal functional form and 

parameter levels

– Deterministic solutions, no run-to-run variation

• Rigorous disjunctive mixed-integer nonlinear problem that

– Minimizes model error

– By relating node values using disjunctions over each node

– Example function
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• Disjunctions formulated using big-M constraints

– Defining operation at each non-terminal nodes, data point, and operator

– Example:   Addition operator

OPTIMIZATION FORMULATION



10

OPTIMIZATION FORMULATION

• Disjunctions formulated using big-M constraints

– Defining operation at each terminal nodes, data point, and operator

– Set constant term

– Set variable

– If no operator or operation is active, the nodes values are set to zero
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OPTIMIZATION FORMULATION

• Logical constraints

– Ensure only one operator per node

– If the node is a binary operator both children are active

– If the node is a unary operator the left child is active
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EXAMPLE – COMPLEXITY CONTROL
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ILLUSTRATIVE EXAMPLE

• “Difficult synthetic problem” [McDermott 

2014]

– 50% success rate for an error tolerance of 

0.01 using state-of-the-art implementations  

[Uy 2011] 

• Starts with tree depth of 4

– 𝑶 ∈ { +, −, ∗, ÷, exp, log, 𝒙, 𝑐}

– MINLP formulation contains 300 continuous 

variables, 120 binary variables, and 9,047 

constraints

– Optimal solution found in 1200s

– 7 node function chosen in favor of 11 node 

function
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CONCLUSIONS

• We propose the first deterministic optimization formulation for 
the rigorous solution of symbolic regression problems 

– provides a certified optimal solution

– No run-to-run variation

• We have shown exact function matches for literature 
problems that routinely show less that 50% success using 
current state-of-the-art symbolic regression methods
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