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“Water is the fastest growing market at the moment, with a size of $500 billion globally.” 

“If nothing is done, there will be a 40 percent gap between supply and demand by 2030.” 
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Water and energy are important resources in the process industries  



3 Ahmetovic & Grossmann 

Conventional water network 
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» Integrated water network with reuse, recycle, and regeneration schemes 

» superstructure is formulated using a nonconvex NLP model  

4 Karuppiah & Grossmann (2006); Ahmetovic & Grossmann (2010) 

Superstructure based water network design 
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Freshwater targeting formulation 
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This formulation provides target for a network consists of a set of water-
using process units using linear constraints 

(LP) 

Assumption: for some contaminant j that reaches its concentration upper bound at a given unit, it also 
reaches the upper bound at all other process units from which reuse streams have non-zero flowrate 

Goal: determine minimum freshwater consumption  



Use heat and water network formulation (MINLP model)  to obtain network structure 

 

6 Bogataj & Bagajewicz (2007) 

Heat-integrated WN reported in the literature 

749 continuous variables 
115 binary variables 
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Extension: heat-integrated water network 
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participate in heat 
integration 
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Revisit: heat-integrated water network utility targeting 

Freshwater 
Tfw = 20°C   

Discharge 
Tdis = 30°C   

PU1     
T1 = 40°C 

PU3 
T3 = 75°C 

PU2     
T2 = 100°C 

PU4     
T4 = 50°C 

Parameter 

CHU ($/kW a) 260 THU
in (°C) 126 

CCU ($/kW a) 150 THU
out (°C) 126 

CFW ($/t) 2.5 TCU
in (°C) 15 

HRAT (°C) 10 TCU
out (°C) 20 

Use heat and water targeting formulation: 

Minimum heating utility: 3767 kW 
Minimum cooling utility : No cooling utility required 
Minimum freshwater consumption: 324 ton/h 

Same result as network approach 

206 continuous variables 
229 constraints 
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Simultaneous optimization strategy 

HEAT TARGETING 
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Simultaneous optimization: methanol synthesis from syngas  

+ cooling cycle 
+ boiler loop 
 

Freshwater requirement 

Heating 
requirement 

Cooling 
requirement 

Duran & Grossmann (1987) 



SEQUENTIAL SIMULTANEOUS 
Profit                      (1000 $/yr) 62,695 73,416 
Investment cost   (1000 $) 1,891 1,174 
Operating parameters   

electricity (KW) 6.59 1.84 
freshwater (kg/s) 36.43 29.25 

heating utility (109 KJ/yr) 0.293 0 
cooling utility (109 KJ/yr) 67.3 72.7 

Steam generated (109 kJ/yr) 2448 1965 
overall conversion 0.68 0.88 

Material flowrate (106 kmol/yr)   
feedstock 48.04 37.13 

product  10.89 10.89 
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Sequential vs. simultaneous result comparison 

17% improvement 
Solved with BARON 9  



12 
R. Karuppiah, A. Peschel, I. E. Grossmann, M. Martın, W. son, and L. Zullo, “Energy optimization for the design of 
corn-based ethanol plants,” AIChE Journal, vol. 54, no. 6, 2008, pp. 1499–1525. 

Example 2: Bioethanol production 

Water Consumption and generation 

Fermentation 

Solid Removal 

Water/EtOH 
Separation 

Pretreatment 
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Water network superstructure 

Cj
in,max (ppm) TSS TDS ORG 

Boiler loop 2 100 10 

Cooling cycle 10 500 10 

1-Βj
t 

Screens 95% 0 0 
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Anaerobic tank 0 0 99% 
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Formulation 
˃ Dew point equation  - condenser 

temperature    
˃ Bubble point equation - feed and reboiler 

temperature 
˃ Fenske equation - # of trays 
˃ Watson's equation – heat of vaporization 
˃ Mass balance 
˃ Energy balance 

 
 

 
 
Assumptions 
˃ Constant relative volatility 
˃ Ideal solution 
˃ Water is the only component contributing 

to heat of vaporization  
˃ Temperature change due to pumps is 

negligible 
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Multieffect columns 
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Result 

NLP solver: CONOPT 3 
MINLP solver: BARON 9 
GAMS 23.7 
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Reboiler duty reduced by ~36% by with multieffect column 

Even though the objective function did not improve using 
simultaneous method, we can see that the solution time did 
not increase drastically  

No 
integration 

Sequential 
single column 

Sequential 
w/ multieffect 

Simultaneous 
w/ Multieffect 

Cost (MM$/yr) 14.91 11.77 8.57 8.57 

Cooling water use (kg/s) 2895.6 1998.3 1127.3 1124.8 

Freshwater use (kg/s) 40.8 127.6 90.0 90.0 

Steam use (kg/s) 35.1 28.3 21.2 21.3 

CPU(s) 387 387 470 563 

# eqns 2,232 2,232 3,213 5,221 

# cont var 2,921 2,921 3,914 5,392 



Cooling  
water 

Utility integration – power, water, & heat  
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Utility system 
 
     Logical constraints  
     Demand constraints 
     Power balances 
     Mass balances 
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Problem statement  

Utility system 
•Existence of boiler 
• Existence of turbine 
•Back pressure turbine 
• Extraction turbine (additional cost 

$20,000) 
• Flowsheet power demand (7500kW) 
• 70% condensate return 

HEN 
•2 hot streams/ 2 cold streams 
• Inlet and outlet temperature can 

vary within +/- 10 K  
•Heat capacity flowrate can vary 

within 20% 
• Two streams have assigned costs 
•Hot utility - HP, MP, and LP steam 
•Cold utility - cooling water 

WN 
•HP boiler has more stringent 

feedwater requirement  
•HP boiler/MP boiler have different 

blowdown rates 
• RO consumes electricity  
• Raw water needs treatment 
• TSS, TDS, GAS present in freshwater 
•Discharge limit imposed 

Water network 
 
 Mass balances 
 Power demand constraint 

Boiler cost Turbine cost freshwater  
cost 

Flowsheet  
stream cost 

Objective function 

Multiple hot utility 
targeting 
 (Duran & Grossmann) 
 
 Heating utilities targets 
 Cooling utility target 
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Result 

Sequential Simultaneous 

Cost (1000 $ / yr) 884.2 641.5 

Utility 

HP boiler flowrate (kg/s)  Yes 17.66 Yes 18.20 

MP boiler flowrate (kg/s)  No No 

Power demand external (kW) HP  LP 7500 Extraction 7500 

Reverse osmosis power demand (kW)  MP  LP 62.0 MP  LP 63.89 

HEN Utility (kW) 

Cooling 1463.8 751.1 

HP steam 3820.2 5727.2 

MP steam 13628.2 21065.7 

LP steam 4743.4 19110.2 

Fcp,H1 (kW/K) 48 32 

Fcp,C2 (kW/K) 144 216 

WN flowrate (kg/s) 

Freshwater 7.26 6.47 

Sand filter 7.2 6.4 

Reverse osmosis 5.6 5.8 

Scrubber 2.4  1.2 



» Developed LP formulations for targeting minimum freshwater 
consumption for a set of water-using process units under a specific 
condition  

» Extended the water targeting formulation to nonisothermal water 
network 

» Targeting method can be used to improve objective function and 
computational effort under the simultaneous approach for flowsheet 
optimization 

» The interaction among power use, heat use, and water use can be 
exploited to achieve better flowsheet design 
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Conclusion 

Thank you! 



This presentation was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that 
its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof. 

Disclaimer 
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